{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Deriving the Maxwell Equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To derive the Maxwell source equations, the Lorentz invariant quantity:\n", "\n", "$$B^2 - E^2$$\n", "\n", "is put in the Euler-Lagrange equations, and the result is both Gauss's law and Ampere's law. In a standard derivation one does a contraction of two rank-2 anti-symmetric field strength tensors:\n", "\n", "$$F^{\\mu \\nu} F_{\\mu \\nu} = B^2 - E^2$$\n", "\n", "The field strength tensor $F^{\\mu \\nu}$ is a complicated structure, with each of the 6 EM fields sitting in their own isolated room. If one were to show the first equation to anyone with high school algebra, they would think that should be the result of a simple product:\n", "\n", "$$B^2 - E^2 =?= (B + E)(B - E)$$\n", "\n", "With the space-time number approach, both the $E$ and $B$ fields necessarily have 4 terms, but the first one happens to be zero for both. As has been my pattern in this library, if I brake a universal convention to make something a \"space-time number\" in terms of its algebraic qualities, I will add a \\_q. Thus I work with $E\\_q$ and $B\\_q$. The goal here is to get to:\n", "\n", "$$(0, B - E)(0, -B -E) = (B^2 - E^2, 2 E \\times B)$$\n", "\n", "Load the needed libraries. Note that Qs.py is a library for manipulating space-time numbers and space-time number series written by the author." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%%capture\n", "%matplotlib inline\n", "import numpy as np\n", "import sympy as sp\n", "import matplotlib.pyplot as plt\n", "import math\n", "import unittest\n", "\n", "# To get equations the look like, well, equations, use the following.\n", "from sympy.interactive import printing\n", "printing.init_printing(use_latex=True)\n", "from IPython.display import display\n", "\n", "# Tools for manipulating quaternions.\n", "from Qs import *\n", "\n", "from IPython.core.display import display, HTML, Math, Latex\n", "display(HTML(\"\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first thing to do is define variables and functions for sympy to use and define the EM potential." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHYAAAAeCAYAAAD5AOomAAAGoElEQVR4nO3ae4xdRR0H8M+WYgvVAAECRSlF0a5GtKUovlp8VGwajaIYIxFQUUQF5VVRW8mK1KKtKIoPIMYiARERRTQGJVEerY/SBwKlRqJRa1oLkQKiWPvwj9+c7vTsuefeu/fu2jb3m9zMnjNzfud35jvze832DQwMqME4/KduQA+7JsbU9K3BU1iHt46OOj10C3XEzsa+WITr8KxR0aiHrqCO2L/g37gcf8WcUdGoh66gEbHHYTX+hPfjERw4gnp8GxsxYQTfsadhOrbj9KrOKmL3wg24FtNwAl6Ev4+QgsfiXbgUT1b0nyc+4OQRev/uihX4IS7B08udVcS+EhOFCd6EAbGT7hshBT+Lx/H1Bv3HpHbFCL1/d8ZCHIqPlDuqiD0Uf8SWdD1b+NuRmNjnYRZuFP68CtPxT/xhBN6/u+O3WIsPCEu7A1XE3id27IHoxzx8EttafNlM/Ain4WjcJUzsKry8NPa96MN3K+R8TpjgfmFqtqbr7cJ0t4OfpefKaVsflqS+S9uUeX567vwG/VNEDeDONuXCUoPfWvW7Ixt7AyaJDbIDYyuEPogFWInNmCvSnVbwGbEQ1uNTuEWQcrMg4zbxwevT+FmCsF9XyFqBa8QCWYafZ313VIyvw1zxPZcknbam+4uT/Kvx8TZl3p3alzXo/4rYRWe1KRd+YOfvLfAeQeIvsntLU/t6Mb+oJpb44MVtKnMK5uN+vEZE1keK3b4Qz8CbBcGLhN+eKhZSVdB0I/YXE38NrmpTnxz3imDwtKTnkqTXeek9Zw5D5krhPo6r6Hu7mOgv43fDkF0194sEqUtwcXZ/eWpn5oPr8th2MFaQtxnvFOnR8amvWNk/Tu3k1D5TrOhi91ahCJxWdkHH+aKSNiB20QKxwk/RupvJ8V8xqYfjsOz+BFwm0reLhq/uDvTha7gAXxXuK9f3MfFdk/KHukXsawVRPxU7lsE8a3W6LpQpgqQiL360Ru4xYgK7EZGvw5dwhDCTy4TP3dyBzMIM5ub4IlGlu1BMeifYS+zQD+LzYkFurxj3DxyU3+gWsTNS+5Ps3jQRyT6RriemtohuC4LHN5A5VgRfa3TvIOLh7O/T8a8O5RXEFua4H+fiV8J9dIK9RWB0qrAyF9aM3UcpqyiIrYvA6n4FnpPaDak9EgfYOUV6dWp/mdqNqW1U0XqBIL0bZphwEYszHT/aBZnLxDwUO/YKscs+rHpntYrxIoA6SZjgT9eMHSNikY3lm4QdH86vjH1TOz21BSn9wlzfhd+ne+vFDprSQOGpqV1V81GtYo7YQQ+IKtpavC/p1QkeFcHfsaIy9jpcqTOdJwjLNwcfwheajJ8iuFid36wyxeMaCFhsZ1Ob497UviO1edAzGTeJgsc52TPbRY53EI6qkFns5McbvJPBHPTdNWNeld6/TpRHHxap2FiNc9dW5Ba4WyzoK0XQOL8DffcTOffxaUyjalyOwlrkKdCQdGcNno+/iTLVzVnfSwya0TK+KXzLiSL/OjzdP1NUrvYWprBsVr+Pt+ENeKjUV5jxBXihSIkewPeyMcXC3KIaLxbR+GMi/Sgi8Jtwj0i/ZghLkqOZ3BxLcYbI188VgUwjNJN7PV4hKkrPFr61jIV2jjlOEHn5LfmgvtJ/UEwSK/oMsZqfK4r/TwpyCtwvApsc/SLMn2nwlOYR3C4KF2sqlHyaKFf+WXU+eBbOFpHsOFFXnpf1rxL+/QhDo+ujxG4aJ3ZAOZ+cJRbhbwwtMtTJLWOGsDzL0zfU+dY6uWPEAhxS0M+wEYdk1/uJmOE2vKUsLEfVGexWYc4kxScqJcMJa9P4gvDv4GCxU6tIJVKNy/FSEUWXcYXwIeOFH8lJ3V/4y2+onvyHRN37ANVFgtuTzDKpzeSWMVekcs0CpmZyt4kiTl1Mc0jpmVPF3Azxwzmxjc5gt4kE/AmxKjc0UKxAQVCrAcQXxYK6uNnAEmaIHPeyNp/rptyT8SbhC5c3GdttfffBJ4Q7K7uSHcQ2O4OdJgKkVkL4dol9SlR/7tHeQfutYrVuaDawTTSTO0nUla/Gt4Tf/1gX5LaLyaLMekFVZxE85WewW4TTPslgxWeq1okqiF3dhpJ3Gt4pyP8Ds0UAs0kELOfovNAxHDyoOrjCILHNzmCPFiuuFbyxbRV3L1ylswOJUUFBbH4Ge7AIUs42WN8dI0zzYWJ1bhpVLXtoG4WPzc9gbzX0DHaeKJivS+N62MVRzmN72EPQrdOdHnYx9IjdQ9Ejdg/F/wARtpYVdJ6xXQAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle \\frac{\\partial}{\\partial t} φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "∂ \n", "──(φ(t, x, y, z))\n", "∂t " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t, x, y, z = sp.symbols(\"t x y z\")\n", "φ, Ax, Ay, Az = sp.Function(\"φ\"), sp.Function(\"Ax\"), sp.Function(\"Ay\"), sp.Function(\"Az\")\n", "φ(t, x, y, z).diff(t)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "EM potential\n", "(φ, Ax, Ay, Az) \n", "\n" ] } ], "source": [ "EM_potential = Q([φ(t, x, y, z), Ax(t, x, y, z), Ay(t, x, y, z), Az(t, x, y, z)])\n", "simpler = {φ(t, x, y, z): \"φ\", Ax(t, x, y, z): \"Ax\", Ay(t, x, y, z): \"Ay\", Az(t, x, y, z): \"Az\"}\n", "EM_potential.subs(simpler).print_state(\"EM potential\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Take the space-time number derivative of the EM potential." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D EM_potential\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAAhCAYAAADqFr7CAAANAUlEQVR4nO2de7QVVR3HPxchRFAsbYWaiuEDNRTQxCwQkIxMe2jqgpV1DbUyX2mUSeK1QHySmmZpLbHSDB+FUom2wnwbqSSKZpkvElJU1CwVk/74znSGYeacvedx5px7f5+17jr3nrPPnn32fO4+v9mv6ejq6qJk+gJvlH0Qw4hgzhnNxHwzysYca1N6lZz/UuB1YBlwYMnHMgww54zmYr4ZZWOOtTFlB1kTgQ2Ac4ArgfeWfDzDMOeMZmK+GWVjjrUxZQdZTwP/AS4AngH2K/l4hmHOGc3EfDPKxhxrY8oMskYBi4EngCOBlcAmJR4vDz8BngP6V12QNmI3YA0wpeqCRGgX58y3bLSac63um3mWjVbyrArHzBt/Up0pK8haD7ga+CkwAtgX2AX4Z8b8BqDx6DXArwooX5Tdgc8CZwKvJbx+YnDcyQUft925D52LGej8VE27OGe+ZaeVnCvStzJcM8+y0yqeFd2muWDeZCPVmbKCrA8Bm6HuzVVAF4qKl2TMrwvYAp3ckblLtzZnAK8Al6S8Hh7vvoKP2x2YBQwCjqu6ILSPc+ZbPlrFuSJ966J418yzfLSCZ0W3aS6YN9lJdKasIGsQ8HfgreDviWhcOcuJ2QkV+ibgQWBLYNMCygiwPTABmIvGvJPYDfgX8NeCjtmd+CPwKPBFdNVVJe3gnPmWn1ZxrijfynDNPMtPEZ51osB5bMb3F9mmuWDe5CPRmbKCrCUoAt8EGApMA04B3s6Q10VAB+qmfDB4bkRK2puR1PFlrh3AnOC1MyPPfyF47RcJeZ0VpB+Kuv/+G/y9BnWn+uBbLhdOCt53UsrrO6B9VW7zzBfgTmqfNennD5G0VwNboX/OKmm2c1nq33xLxsc3aA3nivLNp31zrSfzLJ12atuKcGwMcAPweWAYcDsaBnwA+GAsrXmTTC5nemc4oAuPADOB+4E3galo6akvk4FxwIVBnmE36UjgloT0U4NjzgDmIREAzkWSXQacHEk/IUhzT0Je9wFXBO+7K3a8eKPfCN9yuXBH8LhnyuvfQ9H0MZ75AvyS5Po9HAm0MPLcncHjR4AFGY5VFM12Lkv9m2/J+PgGreFcEb75tm+u9WSepdNObVtex76DArPlwKnoHA0ArkeB0QIUfCwP0ps3yeRypqMJO75nZUPU9dYX2A54Cfgo6lafCxya8r456EQdHvx+ChJ1LjCJ2lVAf+BlJPKwlLyOAn6Iuv8uzfFZfMrlSh9U/pXoREc5OMj3QuD4rAWOcQ7wNVT2KdTKOxDNF1gE7FHQsarCxznf+jff/EjzDbqHc1nbtzjxeuqHeeZLWW1bJ3A5CqRvzVdEbw5DqwQfCo4/CpiPzs8sNEn7k8DX0ee39skPZ2fK3icrD6cDmwOnoQYIald6ad3pAN9Cu+N2oah1JoooD2PtE7cFimyXk044ye9+j3LnLZcrq9GJ3BLVU0h/YDZagjs9e3H/TwfwfSTUxahLOVrel9Hniovdjvg451v/5psbjXyD7uFc1vYtJK2ezDN3umvb1hsFUm+igGUlsHfwWtjjMz94HBw8mjdueDsTD7KepP7YY/znZwUUOomdgWOBh4EfRJ5/FngB2BbYKOW9y4Dzga1RF+FdaOz3zVi6cK+Rl0hnJDp5RazmcC2XD2HXZLSLdDraEfgb6ITnYT0UqX8ZOBv9M6xJSPcibpN1n6Q1/Eoii3M+9W++NcbVN2hv5/K0b1C/nswzN5rRtl0evLYw4bU5WQvuwHgUNP0W9WRBbR+nxcHfYWAQTnA3bxqTyZn4nKzHURTmyrNeRXTnYlS2r1Ibrw1ZglZrDCd9Etvzkd+nAP9OSBPKtX5KHr1Rt+lSirsxp0u5fAilGoXG2YeiOrsbjZ/noQ9wFfAZdLVxep20/UhfjRKlVfxKIotzPvVvvtXHxzdob+fytG+N6sk8a0wZbdv5wMax54ajIbkrUBAWZbFDnlkZHTz+OvLcCLQi8NXg782Cx3CVoHlTn8zOxIOsfTIWIO1q05cONCEv7Nq8uU7akSQ3QpPQBLoVaAns8SjyjPNc8Ji2e+5OSLgiukZ9yuXDXajuw8j9IhRtf4V852R94Frg46hb9Lw6aXuhxuUJh3yz+pVEEc51BI9ZnfOpf/MtHR/foBrnivItT/vmUk/mWX3KatvOT3iuEwVZc3Cfk5Xn84Xt2ZDgcUXwuA3wTjTfL2Rs8BiWy7xJJ5czRa0u7GicxImN0ISy1WiX26SKGYwazqR5C/uhiPVh1GV6G3AE2szt0Vja5SiS3iGlLMODxwdcC18Hn3L58BKaqLg7Wqm0D9pELk+Z+6Mlv+OAo0nflC5kB3T+F+c4ZhZawTmf+jffkvH1Dapxrgjf8rjmWk/mWTrt0LYV1a6BbioNGiqEWoA0FJ2v24G/BM+ZN8nkdqaMie99c7z32yiq/S7qPjwi4Sdc2hnfGfnDKNpchm4/8Dxattqb5D031qCTuymaAxEnjOhfSSnrnCCPzrqfyL9cPnmDJjJugFZ9rEQTCtNolO9AdHW9d5DG5QsvvGpY6JC2LKpyDtzrP69v4OZFd/cNqncuq29ZXfOpJ/MsmXZs2+p5di5rDwdG+XPwGK5QjU5YH4zO21vACZH32PfhuhTiTNH7ZC0FdgT+gXYxvt7jvcNQt94zqDFK4yE0j2FHamOfu6LVEi+j/SnCFRLXAn9CXbajUeQe5TrgILR0+m+x18JddWcC70cbuD0MXBM8Hwaob5FO1nK55B1yJ1paOwCNP79YJ22jfK8C9kI7174PjT3HmcXaY/L7ovMxz6GsZVCVcyE+9Z/HN2h8/nqCb1Ctc1l9y+Oabz2ZZ+vSbm1bI88+QPoQ5I9RnX0a7e+0ZfD8l9Cu8X3QcF186M++D9emEGeK3idrKxSZHoWi0u1QxHowWrWzPfBUkPYC1G24V/Ce21AFH4g2/6rHI6jLc0+0GucOFPXvTW3X5JAJSLR7WXejsneg2xQ8hSbLxTkGrQLaOsj/DLS5G6gLckjwWtKKjG1zlKtR3lFGo7pbFHyGemPP9fLtheSvd0PU54D3RP4eiMbUFwCfalDOskhzbhlaujs7knY4qu8RqBHL6ty9ked96j+Pb1D//PUE36B659J8Oxk1uHG60CTZrK4twr+ezLO1qapt6yT7PllpnvVBAU6fSNqHWHdvq6Go7RuDhrxAPTu/Q5uULk04pn0f1ijMmTI3I30MdWleisYoF6EPdSSaPDYVBViPl1UAR76JZBmJ+9jtxii4Ow9t5lYkvnnfgCbkhQ1yUfm6cCza4G0M6159VEHUuWvQFcqkyOsL0dVX1t2ik3Ct/5AsvkF5zvnmW6Vv0FrORX3bkNqXGSjoOhQ1+vFegWZgnuWjVT3rheYc3YuCiKdRT0pa8LENuv/hz9E8pUbY92F2Ep0pck7WKDTZ6wkUSK2kNo67Bu3o2okan+moIqoOsEDzI56mfhd+nNFo8ursRgkz4JP3ZOAANFbc6Au+6DL3Q/+Q11FdI1TPubtRl3rIQai7+rQCj+9T/yFZfIPynGsX36B65+r59iq6il2BNig8BK3gqiLAAvMsD63s2dtos81XUd2soH7vTriAwjVgsu/DbKQ6U9ScrPXQjREvQuPBlwG7AD+KpLkZffAZwP5oDLYVeB3tMjsOXYm+5vCeG0nfTyQvjfLeCsk0BPgc6plxicSLLvNgdGU1p8A8fWjk3D3oKuVd6JyejRqOF3IeN2v9h2TxDcpzrl18g2qdc2njQMMnR6MA67Emli+OeZadwbS2ZyPQ5PZ6Q2HRtOAeZNn3YTYGk+JMUcOFY1AQNQAN0eyMxon3oBZRjkcfrB/q7ixqv42eRnj/qFVoDPsEmrtpZ6vQyLm+aCXMAajruxPNW1id87g9rf572udNw6WNOxXV1ziq68FqV8wz4eLZPDRv6jiH/OajUaN3ox6x7kbLe1NUT9YgNO4bztKfiLocwxUJu6LVEUejFQ8zgY8VdOyexqXkvzlnd6CRc2+gq7cD0I1IJ5M/wIKeV/897fOm0ci36WgLhrG0xjSIdsM8E408A10s3uiY3/7FFa0laXlvigqylqBt+jdBEfM0NAnsbTRz/zdoE74r0BffYpKXahqGK/WcC7kb7SR8C7UbohpGFur5Ng31KnwCDa8MCt6zCr9b+hiGS7vWCw0hbo5uRbOquUU0fCgqyHoE9U7dj27wOBW4Es2HuQl9wc0M0j6I9sWYhTYmM4wspDkXZTFqnE5sasmM7kiabx1oDshG1O6dFjKeajfpNdoPl3ZtGnAWWiV9Cdp/zWhRytzCwTCq5hY0+dgaIcMwDKPpFL3ju2FUTS/UzT4F7Ux8SLXFMQzDMHoqFmQZ3Y0xwO/RjU8PovEOwYZhGIZRChZkGd2NWynnxueGYRiG4YV9GRmGYRiGYZSABVmGYRiGYRglYEGWYRiGYRhGCfwP9/rJuljfQ6cAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - \\frac{\\partial}{\\partial x} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial}{\\partial y} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial}{\\partial z} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial t} φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ " ∂ ∂ ∂ ∂ \n", "- ──(Ax(t, x, y, z)) - ──(Ay(t, x, y, z)) - ──(Az(t, x, y, z)) + ──(φ(t, x, y,\n", " ∂x ∂y ∂z ∂t \n", "\n", " \n", " z))\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAAhCAYAAADNuD8qAAAM9UlEQVR4nO2de7QVVR3HPxcxUkhNbYWacE1T1FRACytBUDMz7aFpS5Ym+SAz30ZZGF5NxXdmmqW1gkozX6XRA3Wl+TYTUBTtYZaSkI9EzfKV9Md3pjPM3fPYe+aeczjn91nrrrn3zD4z++z9uTO/2a/T09fXRw5DgFfyEhhGDZhnRjMx34xmYa6t5AzK2bcIeBlYDOzVnOwYXYh5ZjQT881oFuZaB5AXJO0GrA6cDVwGvKMpOTK6DfPMaCbmm9EszLUOIC9Iehz4D/AN4Alg96bkyOg2zDOjmZhvRrMw1zqArCBpHLAAeAw4FHgGWKdJeSrDD4CngKGtzshKxrbAcuDgVmckot09izHf/Gk312Dl8M1c88dca2D+hJHpkCtIWgW4AvghMAbYFdga+IfnSYehvtjlwM8835vHdsD+wBnAS479x0XnnFzjOTuF+1BdnIrqp5XU5RkMnGtgvoXSTq5Bvb7BwDhnroXR6a6VxfwJJ9MhV5D0AWA91ES4DOhDUelCz5P2ARugShnr+d48TgdeAC7O2B+f674az9lJzASGA0e1OB91eQYD5xqYb1VoF9egXt9gYJwz18LpZNfKYv5Uw+mQK0gaDvwFeD36ezfUt+pTsFtEJ/o18ACwIbCuX36dbArsAlyJ+npdbAv8C/hTDefrRH4HPAJ8Fj3xtIo6PIOBcw3Mt6rU4doUFIhMrJiXunyDgXHOXKtGp7pWFvOnOk6HXEHSQhQFrwOMAqYDXwHe8DjZhUAPat57IHptjCPdDUjK9PTIHmBWtO+MxOsHRft+4jjWmVH6Uai57L/R38tRE6QPvvkqw/HR+47P2L8ZWk/jVs/jAtxB47O6fn6bSn8FMAL9U7WKOjyD8q6FlL/55sbHt3ZwDerzDco751NO5pqbbnZtAnA9cCCwFXAb6kabD7wvldb8cVP53jjYcdCHgdOAecCrwDQ0fbEsk4FJwAXRseImxrHAjam006LznApchyoP4BwkxqXACYn0u0Rp7nac9z5gdvS+O1PnShdEEb75KsPt0Xb7jP3fRNHrEZ7HBfgp/csW4DOowm9OvX5HtP0gMDfgfHVQ1TPwcy2k/M03Nz6+tYNrUI9v4OecTzmZa2661bWvoeBqCfBVVFfDgGtRYDMXBQ9LovTmj5vK90ZXkAT6wOcEZOgtaE2IZ1E/LDSetFz99vejwW0HAgegSPQr6AntSuCwRNqhwGgkoGtQ2pXAWtGxZgOXBOQ/JF9lmYeaQcc59u2DKuUCGuXlg6uuzkYSzAJOSe27N9pOCDhXnYR6Bv6u+Za/+ZaNj2/t4hpU8w38nStbTuZaNt3o2gHAicCDKCAfB2yE6mkm8vBjKFg6G/Mnj8r3xrx1kkI4GVgfOAl4LnotftJyNUeDZHgZXXSOQBH4XFQByebJDVA0uYRs4gvVPM98V8lXWV5DFbAhKqOYocB5aNrmjPDs/p8e4FvAF4CLUDNsOr/Po882oobztQpf13zL33wrR5FvneBaTMj1LSavnMy1cnSDa4NRIPQqsB9aOmDHaF/c4jIn2vZGW/OnHEH3xjqDpC2BI4GHgG8nXn8SPXltAqzheN9i4HxgJGpWuxP1d76aShevMfEc2YxFBV7HLIKy+fIhbspLNivOQCuxfglVUBVWQdHx54CzkMDLM9L+k3KDTf9Kfp9u+udHoZn3INQ1n/I334op61sV174f7bvZsW9WaMYDCHUOisvJXCumW1zbCQU9v0ItSdBYw2dB9Hd8Y48HaJs/xQTfG7O620K4KDresTT6KWMWohkDo3EPvno68fvBwL8daWIh3pxx/sFocNsi6vtCwTL58iEWYRzqWx6Fyusu1AxahVWBy4FPogj/5IL0q5E9CyLJoyiyLsuTHmlDCXXNp/zNt3x8fCvr2vmoWyDJaNS1MBvd2JIsKHHMugh1rkw5mWv5dJNr46PtLxKvjUEz0l6M/l4v2saz1MyffCrdG+MgKSuiKqIn2u5Po0nwhpz0Y+l/EdkP9RsuRVMnj0bRXpqnom3WqqVbIEnqaE70yZcPd6KyjqPlC1GE+3nC6wD0ua8GPoKaEs8tSD8IXSAeK3HsnSvkK0mVzxfTQzXXfMrffMvGxzcf1853vDYF3bhmAbeUzmF9vkG4c2XLyVzLpttc2zjaLo22GwFvRctNxEyMtrdEW/Mnm8r3xjhI6nGlLskaaCDUa2hAl+sD9aKbbbrffncUJT6EmhlvBQ5Bi3A9kkq7BEWvm2XkY3S0ne+T+Qx88uXDc2hw3XZolszOaOGvKnkeiqaJTgIOJ3shsSSboTpfUOG8vlRxLKaKa+BX/uabG1/fWuEa1OMbhDvnU07mmptucy3J6tF222gbBzijUL3dBvwhes38cVPLvdE1JmlIxpvPYcUmwJhTUDT5ddTsdojjJ54SmJwBsgOK8BajZdufRlMdB+NeZ2E5qpB1Uf9/mjiKfiEj/9BYx2FKThrffJU9bszt6B/gO2hQ3okV8rsmerLdMUpTRgJoROvp6Y/NIsuxIkJdS1K2/Kv6NotyTnS6b612DcJ9gzDnfMvJrm396UbXQLPHAD4VbZMDrntR/b0OHJN4j/nTn9rujekxSYuAzYG/oxVlr03sew/9myC3Qs1hT9B/Kl2SB1E//uaov29TNEL/eTS9Lx6VfzXwe9TkOR5Fy0muAfYGPgT8ObUvXs30NODdaCrkQ8BViTRxUPg6brYJzFfRcZPcAUxFa14ciwaJZVF03MuB96OVQt9JY1pykpn074feFdXHdSXyWzd5juUR6lp6fIJP+VfxrYwT3eBbK12DcN8g3LmQcrJr24p0m2sx30Nl9wm0vs+G0euHoZW7V0XdXemuM/NnRWq7N/b09a3w3hEoOpyKIsN3oS/lewlVTsyD6AJyKyqYvdCiTXk8jJoKt48yMARFeem1D3ZBctxD/8Wl3oSWd/8b7jUVjkAzUEZGxz8dLcgVMx/1+Y6k/0yATVAkG5KvvOOmGY/K7d7oM+T1t+YddxASdljO+58C3p56bU3UlzwX+HhBXgcCl2OL0dP4TEf6PjTQLtS1e1L7fMq/im9FTnSDb3W4NgXNOpqE3ziRmCzfFqPpxecl0o5G5T0G3fBCnbsJ//9Lu7Y16DTX9kGzfjdF9Qvqntod3cifTh1nFPJyAuoyArWs3IQWmVzkOLf506DWe2M6SEryR9TF9l3UT3hPlPHHUfRV9IEHii+jCh6LX3/lWmiq7rnAF2vMj+9xr0eDyLansXBVHccty5FoYa4J9I/6m03s2CVogbShiX0noCbn8fR/MqpC2fKPCfFtLQam7kKO3Urf2sk1WNG3q9BT6H6J/TejJ+yQlX3rwK5t4bSzaz2oPOYDh6IBxNNQgPRozjE2Qt8B92M0TqcI86caToeSY5LGocFKj6GKfAb1Zb6BFnh6EWV8Ka0LkEBjAx4nv/nbxXg0+PK8ooQDeNzJwJ6of7ToBj0Q+V0N/SNdQ2suJFmOgfxaGv0cBOyLZnHUGSD5lH9MiG8D5ZrvsVvpW6tdg3zf7kJDCGL2Rl0KJzUxf2ns2hZGu7u2HK1KPQU9/M1AwUBegASNiQBlAx7zJ5xMh+IxSaugL3a7EPWJXgpsjVqRQJV1P/VMdazKy2hlz0mo5cG1DLuLn5O9jkQVio47AgmwMfBp9KRaJvodiPz2oiebWTUftwxFjsVMRzMRJqKnsaqEln9MiG8D5VqZY7eLb720zjUo9u1u9CS6NqrTs9DN5dmm57SBXdvC6KW9XQMNIr4XfefZHmgcTxG+QZL5E04vGQ7F3W0TUCUOQ03QW6JxR+9FFXsd6us8quaMdQNT0Wj9Zajf9hias+Biu1HkGGimxFT0T15XC1K3lX+3fd4sinwbgmb77Im6J6agcZavtSCvKyvmmihzbdsJ3dxXQ8NXyqxZNAe1OL0NtUx1GiuFP3FL0nDU9xmPFN8NNdvFo+K3QhVs+HMJ1b5QsFMocmwGmk49keJmaB+6rfy77fNmUeTbK+gJfU/0ZZ2TsQDJF3NNFLm2DZrpdjiatXYa8OESx92j3my2HSuFP3GQtBAtdb4Oilqno0FM8XfEDELNh+uj5ceXNTWXRieQ59h01Er5UdREPDx6zzL8vhLFMGKKrmmgcUlHo6fYOc3OoNEx5Lk2EvglWpB0NgrMF+CeLm+0IXGQ9DCKbuehL6mbBlyWSDcdOBPN+rgYrR1iGD5kOdaD+qHXoPH9PTE70dqF4YyVl6JrGuhm9QZwXFNzZnQaWa6tjb5OZE60HzR9/mq03MkOTc+p4U3eEgCGYRidzI1ocoA99BmG4SS94rZhGEYnMwh1iRyMVh/et7XZMQyjnbEgyTCMbmIC8Bv05aB709o13wzDaHMsSDIMo5u4BfcXexuGYfTDLhaGYRiGYRgOLEgyDMMwDMNwYEGSYRiGYRiGg/8BhBiyDA6wFoEAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle \\frac{\\partial}{\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial}{\\partial z} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial y} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial x} φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "∂ ∂ ∂ ∂ \n", "──(Ax(t, x, y, z)) - ──(Ay(t, x, y, z)) + ──(Az(t, x, y, z)) + ──(φ(t, x, y, z\n", "∂t ∂z ∂y ∂x \n", "\n", " \n", "))\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAAhCAYAAADNuD8qAAANEElEQVR4nO2deZQcRR3HPxuCARIBAZ9BJFkEIYBAEtCgkpAAIqJ4gOAjD2SVQ0RuDCKBsCD3ESOCKOhzo4LIpWA8AjxBIBwiSSRcHohCJOGSSzEcJv7xrWI6vd3TXd09M7szv897+zqZ7qmuqf5M9a/rmq7e3l4yGAa8mnWQYZTEPDOahblmNAtzbZAzJGP/Q8AyYDGwZ+OzY3Qo5pnRLMw1o1mYa21AVpC0G7AGcB5wOfCuhufI6ETMM6NZmGtGszDX2oCsIOlx4L/AN4EngN0bniOjEzHPjGZhrhnNwlxrA+oFSROAhcBjwMHAs8C6TchTCD8EngaGtzojg4xtgRXAga3OCOZZuzKQHPOYa+2JuVbD/ClGqkNpQdIqwJXAj4BxwK7A1sBTBU4+AvXJrgB+XuD9aWwH7AecDfwnYf+x7pxTKzxnu3Afuhano+vTKqryrFGOgXlWlIHimKfKOg0a45y5Vox2dy0v5k9xUh1KC5I+BKyPmglfAHpRZLqowMl7gQ3QxRlf4P1pnAm8BFySst+f674Kz9lOnAWMBI5sYR6q8qyXxjgG5lkZBoJjnirrNGiMc+ZacdrZtbyYP+VIdCgtSBoJ/A14w/1/N9S/Glq4W7gT/ga4H9gQWC8wjSQ2BXYBrkJ9vklsC/wb+EsF52tHfg88AnwRPfmE0oNuEJNL5KEKzxrlGJhnZSnrWJVUVadBY5wz18pRhWs9lK/ToFrX8mL+lCfRobQgaRGKhNcFxgDTgROB5YEnvQjoQs1897vXxiUcdyOSMz5Nsgvoc/vOjrz+BbfvpwlpneOOH4Oazf7n/r8CNUWGEJqvPBzn3ndcyv7N0LoatwWmCzCP2mdN+vtd7PgrgVHoy9UKqvAsr2NFyt08SybEs1Y75qmqToP8zoWUk7mWTCe7Ngm4ATgA2Aq4HXWjLQA+EDvW/Emm9D1xaErCDwNnAPOB14BpaApjCFOBKcCFLj3f1DgeuCl27DR3rtOB69FFBDgfCXIZcELk+F3cMXcnnPc+YLZ7352xc8ULJIvQfOXhDrfdPmX/t1AUe3hgugA/o3/ZAnweXfhbYq/Pc9sPA3MLnK8sZT0LcaxIuZtnyYR41mrHPFXUaRDmXEg5mWvJdKprX0fB1RLgZHStRgDXocBmLgoelrjjzZ9kSt8T04Ik0Ic+v0CmAN6K1oZ4DvXHQu2JK6n//o9okNsBwP4oIj0RPaldBRwaOXY4MBaJmDQ47SpgbZfWbODSgp8hNF95mY+aQyck7NsbXZwLqZVXCEnX6zwkQx9wWmzfvW47qcC5qqKoZ6GOhZa7eZZOiGcDwTFPmToNwp3LW07mWjqd6Nr+wEnAAyggnwBshK7TWcjDT6Jg6TzMn3qUvidmrZNUlFOBdwKnAM+71/wTV1KzNEiKZajyORxF4nPRhYg2U26AosolpOMrrPmB+S6Tr7y8ji7EhqiMPMOBmWj65ozi2X2TLuDbwFeAi1FzbDy/L6LPNqqC8zWbUMdCy908y0eWZ4PZsThF6jVPvXIy1/LRCa4NRYHQa8C+aOmAHd0+3+Iyx2273db8yUehe2IjgqQtgSOAB4HvRF5/Ej2BbQKsmfC+xcAsYDRqXrsT9Xu+FjvOrzXxPOmMRwVfxWyCvPkKwTfpRZsXZ6AVWb+KLlQZVkFR8peAc5HIK1KO/RfZg07/Tv++3B+4fbck7OsrmvGcFHUspNzNs2zyepbHMUj2rN7fj8tkPpCizkF2OZlr2TTDtVbWaZ6dUNDza9SSBLU1fBa6//sbux+gbf5kU/ieWK+7rSgXu3SPodZf6VmEZg6MJXkQ1jORfx8IvJJwjBdjtZTzD0WD3B6iuh8WzJOvELwQE1Af8xhUXneh5tAyrApcAXwGRfqnZhy/OumzITyzUHNtlLGoyXc2qnCiLMxIryxFHQspd/OsPiGe5XEM4FH0FJeXJwOOLUtR5/KUk7lWn0a4NouBVad5JrrtLyOvjUMz0l52/1/fbf0sNfOnPqXuiT5ISouo8tLltvtRaxq8sc7x4+lfmeyL+g+XoimUR6GoL87Tbpu2eukWSJYqmhVD8hXCnajMfdR8EYp0v0y5a7EacA3wMdSkeEHG8UNQRfFYxnGzEl7rQRVKH3Br7hyW+3xdlHMspNzNs3RCPMvrGMDOJfIUp2ydBuXrtbzlZK6l0yjXZiW81kPz6zSPd21jt13qthsBb0PLTXgmu+2tbmv+pFP6nuiDpK6kowNZEw2Ieh0N7Er6YN2oIoz33++OosUHUXPjbcBBaDGuR2LHLkFR7GYp+RjrtgtCMp9CSL5CeB4NstsOzZbZGS0AVibPw9F00SnAYaQvKBZlM3TtF5Y4byhlXCvjGISVu3mWTKhnrXAMqqnToLhzIeVkriXTaa5FWcNtt3VbH+CMQdftduBP7jXzJ5lK7olJY5KGFczQaSiq/AZqfjso4c9PDYzOBNkBRXqL0fLtz6Apj0NJXm9hBbow66FxAHF8NP1Snbz2uXR66hwTmq+86XruQF+E76LBeSeVyO9a6Al3R3dMHhmgFrXHp0E2izTXzmfl5mZPUcei5C33sp71kc+Fdves1Y5B8ToNijkXWk5Wp/WnE10DzR4D+KzbRgdcd6Pr9wZwdOQ95k9/KrsnxsckPQRsDvwTrSh7Xc6Et0LNYk/Qf0pdlAdQf/7mqN9vUzRS/0U0zc+Pzr8G+ANq+pyIouYo1wJ7AR8B/hrb51c1PQN4L5oS+SBwdeQYHxy+QTLbFMxXVrpR5gGHoLUvjkGDxdLISvcK4INoxdB3U5ueHOUs+vdH74qux/U58ls19Vx7H/2bu4s6Fh+fEFLuZTzL40IneNZKx6B4nQbFnStSTlanrUynueb5Piq7T6P1fTZ0rx+KVu5eFXV3xbvOzJ+Vqeye2NXbu9J7R6Ho8BAUGb4HRY0nuATj9KJBULehAtoTLd5Uj4dRk+H2LiPDULQXXwNhFyTJPfRfZOotaJn3f5C8tsLhaCbKaJf+mWhhLs8C1Pc7mv4zAjZBEW2RfNVLN85EVG73us9Qr9+1XrpDkLgj6rz/aeAdsdfWQn3Kc4FPZeQ1iR40G2QKYf33niTXnkJf4FUjxz2AblZFHbsnti+k3Mt4luVCJ3hW1rEqSKvT9kaz4zZF1xfUZbA7qlyfobhzNxP+fbQ6rUarXOuh+jptsfub6f48Y1F5j0PBVZQx7thJqMsI1LJyM1pkMn48mD9RKr0nxoOkKH9G3R6XosWrhkf2nYCaAyfSP2ptFl9DF3o8Yf2Wa6MpuxcAx1eYn9B0b0CDybantoBVFenm5Qi0QNck+kf/zca79j3UJ30P+pI8jiL9rC9XCHnL3VPEs7VpzDUrknYrPRtIjsHKdVoXKo8FwMFoUOc0FCA92qL8WZ1WnIHs2tWoxWPfyP5bUGtOvVWkN0K/AfcTNE4nC/OnHIkORcckTUCDlR5Dlcaz1PoyX0YR1lK0ANM+aIR9qwIk0BiBx6nfDJ7ERDQIc2bWgQ1MdyqwB+onzbpRNyK/q6Mv1LW0pkJJc205WkzsZVQuS6k2QAopd08RzxrlWGjarfSs1Y5B/TptBVopuAc99M1AFXSrAiSwOq0oA921u9AQAs9eqPvqlIw0/USAvAGP+VOcVIf8mKRV0A+7XYT6RC8DtkZP9lGmo1Hik1Gk3EqWoRU+p6BWrqTl2JP4BenrSZQhK91RSISNgc+hp4g8UXAj8tuNnnD6Kk43D1mujUODF+s1tYZQtNw9RTxrlGN50h4onnXTOscgX512I6qQTwc+jsZWtBKr04rRzcB27W7U6rEOuqbnokDmuYx0Q4Mk86c43aQ45LvbJqEKYwRqFtwSjQV5P7Wo7mTU1zqF1rYgDVYOQaP2X0D9t0fT3MXwBgpZrl2P+tWPrOh8nVbunfZ508hTp+2EKtzVUTdvVevIdArmmshybRiaWbYH6grrQeMsX89Idw5q3Xw7aplqNwaFP74laSTq+/QjxXdDzXZ+VPwMNNV1Mq1tjh7MXEq5HxZsF7Jc2wrduKqi08q90z5vGlmebYNmHx2GZhKdAXy0yXkc7JhrIsu1V1Fr0B7oh2Gnkh0ggVo325lB4Y8Pkhahpc7XRVHrdDSIabn795HAJ1Dz3Uj3nhcI+wkBw4D6roHGyW2Nxia9gjwzjFDqeTYa+BVaJHI2uoEtJHkKs2FkkVWngcYlHYVaTOY0O4NGcXyQ9DB6kpqPfqRuGnA5mgFyPFp1dl7svTvR2kW7jMFJmmue6cA5aNbHJWidGsMIJc2zddBPPMxx+0FTmq9By5zs0PScGoOdrDoNFIQvB45tas6M0tRbAsAwDMMwjPLchCY72UPfICO+4rZhGIZhGOUZgrrfDkQrXe/T2uwYRbAgyTAMwzCqZxLwW/RDtHtR7ZpvRpOwIMkwDMMwqudWkn9E3hhE2AU0DMMwDMNIwIIkwzAMwzCMBCxIMgzDMAzDSOD/R2eyDJxywfYAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle \\frac{\\partial}{\\partial z} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial}{\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial y} φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "∂ ∂ ∂ ∂ \n", "──(Ax(t, x, y, z)) + ──(Ay(t, x, y, z)) - ──(Az(t, x, y, z)) + ──(φ(t, x, y, z\n", "∂z ∂t ∂x ∂y \n", "\n", " \n", "))\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAAhCAYAAADqFr7CAAANbElEQVR4nO2dedQVZR3HPy9qLuCS2gk1EdMUNRXQwkoQ1MxM20w9cjIpl8zUXKJMFF9NxV0zzdI6QaWZueTSgnbCXCMSURTNMk1JcEvUFheS/vjO+A73ne2ZeebO3Pv+Pudwhvfeuc8895nPfeY3zzY9vb29VMzKwGtVH8QwIphzRrsw14x2YJ51KIMqTn8B8CqwEPh0xccyDDDnjPZhrhntwDzrYKoOsnYHVgPOAa4A3lXx8QzDnDPahblmtAPzrIOpOsh6Evgv8C3gKWCPio9nGOac0S7MNaMdmGcdTJVB1hhgHvA4cAjwPLBOhccrw4+AZ4HBdWekg9gOWAYcVHdGInSKc+ZbMZrkXNNdM8fcaZJfIXV4Zu64k+hOVUHWCsBVwI+BUcBuwDbAMwXTG4L6o5cBv/CQvyjbA58FzgT+HfP+scFxJ3o+bqdzLzoXp6HzUzed4pz5VpymOOfLtTocM7+SaYpfIb7rtDxY/VSMRHeqCrI+BKyHmjeXAL0oKp5fML1eYAN0ckeXzt3ynAG8DFya8H54vHs9H7cbmAYMBY6qOyN0jnPmWzma4Jwv13ppv2PmVzpN8CvEd52WB6ufihPrTlVB1lDgb8DS4O/dUb9ykROzJcr0b4AHgA2BdT3kEWAzYFfgatTnHcd2wL+Av3g6ZjfxR+AR4IvorqsIk9BFZnzJvHSCc+ZbeZrgnA/X6nLM/EqnCX6F+KzT8mD1Uzli3akqyJqPIvB1gBHAFOAE4M0CaV0M9KBmygeC10Yl7HsLkrt1mmsPMD1478zI618I3vtZTFpnBfuPQM1//wv+XoaaU11wzVcejgs+d1zC+5ujdVVud0wX4C76vmvcv99H9r0KGIZ+nHXSbueKlL/5Fo+Lb1C/cz5cc6nXXMonyTGffkF3O1a3XyE+PBsH3AgcCGwN3IG6Ae8DPtCyr9VP8ZRyZ8UCB8zDw8DpwFzgdWAymnrqykRgAnBRkGbYTDoauDVm/8nBMU8DbkAiAJyLJLscOD6y/67BPn+ISeteYEbwubtbjtda6Wfhmq883Blsd0h4/9somj7CMV2A64kv388jgWZFXrsr2H4YmFngWL5ot3NFyt98i8fFN6jfubKuudZrLuWT5JhPv6C7Havbr5Cynn0TBWaLgJPQeRoCXIcCo5ko+FgU7G/1Uzyl3KkqyAIV2LklPr86WhfkBdQXDX13fEnjF+5HgwQPBA5AUfEJ6G7xauCwyL6DgZFI5LgBflcDawVpzQAuK/AdiuQrL3NRk+6YmPf2QSf5IvrKzIW483YOEmo6cGrk9TnBdlyB4/imnc65lr/5loyLb9AM54q6VqRey1s+aY759Au627Em+BVS1LMDgBOBB1FAPwbYGJ2jacjDT6Bg6xysfkqjlDtVr5NVhlOA9YGTgReD18I7vqRmdZBYr6IK7Ah0JzATncxoM+sGKLJdRDJhpTfXId9l85WXN9AJ3RCVU8hg4Hw0BXdq8ey+RQ/wHeCrwCWoSTma35fQ9xrm4Vh14+Kca/mbb/nI8g0627mi9VpIWvlkOebTL+hexzrZL1DjyTTU+rU/WvZhp+C9sMXn5mA7PNha/ZQPZ3dag6wnSO97bP33Ew+ZjmMr4EjgIeC7kdefRneAmwJrJHx2IXAhsBFqIrwb9f2+3rJfuNbIiyQzGp08H7M58ubLhbBpMtpEOhWtCPx1dMLLsAKK1L8EnI1+DMti9vsn+QbtPkF/h34YvDcr5r3pRTNegCLOuZS/+ZZNXt+gM50rU69BdvlkOebTL+huxzrRr5CdUdD0a9SSBX3rOM0L/g4Dg3CAu9VP2RRyp7W78DEUheXlaacs5ucSlLdj6OuvDZmPZm2MJHkQ23OR/x8E/Cdmn1CuVRLSWBENFFyAvwdz5smXC6FUY1A/+whUZvegJt0yrARcCXwG3W2ckrLvqiTPRolyIWpyjjISNVvPQBVWlHk50vRFEedcyt98S8fFN+hM58rUa3nKJ82xKvyC7nWsE/0KGRtsfxl5bRSaEfhK8Pd6wTacJWj1UzqF3WkNsnYpmIGku01XelAfcdi0eUvKvqOJr4z2R32oi9EU2K+gyLOVZ4Nt0uq5WyLhfDWt582XC3ejsg8j94tRtP1lyp2TVYBrgI+hZtHzUvYdhCqZx3Oke2HMa5NQhTQduC13Dv041xNsizrnUv7mWzIuvkE9zpX5fmXrtbzlk+aYb7+gex3r1DotrM82CbaLg+3GwNvRciEh44PtbcHW6qdkSrnja+B7T/YuuVgDDSh7Aw2MiyuY4SgYjBu/sAeKWB9CTaa3Awejxdweadl3EYqkN0/Iy8hge1/ezKfgki8XXkQDFbdHM5Z2QYvIlcnzYDTldwJwOMmL0oVsjs7/vBLHLEITnHMpf/MtHlffoB7nyvhWxjGX8klzbGSw9eEXdLdjnV6nhawWbLcLtmGANAKdszuAPwevWf0UT2l3qhj4vnKJz56KotoLUPPhwTH/wqmdrTNxdkTR5kL0+IHn0LTVFYlfc2MZOrnrorEQrYQR/csJeZ0epDEp9Ru558slbdBAxtWA76EBjiem7JuV7proLnunYJ88F7zwrmFWjn2roi7nIH/5l/UN8nnR7b5B/c4l+XYuy3fRhBR1zLV80hzz5Re4O5Y33ZC8juVJdyDWafcH2/2CbXTA+nB07pYCR0c+Y9fD/nhxx/cSDguALYB/oNWMr3P47NaoWe8p+k/ZjvIgGs+wBX19n9ui2RIvoama4QyJa4A/oabbsShyj3ItsDfwEeCvLe+Fq+qeDrwXTWt9CPh58HoYoC4lmaL5ypN2yF3AoWj9k2PQoLskstK9EvggWrn23fRNMY8yjeX75HdD5+OGHHmtgrqcC3Ep/zK+Qfb5Gwi+Qb3Opfn2Pvp3D5VxrEj5JDnmwy8o5piLX5DfsTzpDrQ6DeAHqNw+hdZ32jB4/TC0avxKqLuutevProfL48Wdnt7euM8VZhiKTA9FUel7UMS6EE2jPD+y70hgNmoeX4Ci6LFohsH1Gcd5GDV57oBm5dyJIv+d6L8Oxq5ItNn0X6jsbegxBX8nfn2NI9BsoI2C9M9Ai7uBmiA3Cd6Lm5GxaYl8ZaUdZSwquznBd0jre05LdxCSf0jK558F3hn5e03Upz4T+GRGPpOYhGbjTMBt/EJIknP7oNmvm6HzC2qO3gP9cJ6juHOzI6+7lH8Z3yD9/A0E36B+5+J8ewZddFaK7PcgCrCKOjaHYuWT5lgZv6C4Yy5+QX7HstLttjrteHRRb6WX/gOxR6Dr7TjU5QVq2fktWqR0QUw6dj3sw5s7voOsKI+i5vPLULS7FEXPIbNQJFxkBVaffAPJMpr8fbdroeDuPOBrnvPjmvaNaEBeWDH7SjcPR6IF3sbR/+6jDqLO9aDyuA84BA1YnIwCrMc8HjNv+YcU8Q2qc8413Tp9g2Y5F/r2fTQOZDaq2J9Ed7d5AooqaFKdViTdPI4VSTcPTfILlq/TVqcvYAIFXfuhwKK15SlkY/T8w5+icUpZNMmdImk37nroc0zWGDTY63F0UXuevn7ce1BTesjeqOnwZI/HL8oFqFJMa8pvZSwaxHp+1o4FcEl7IrAX6ivOusD7zvOq6Ad5LfVVRmnOLUOrCE9CldFU9OPzGWC5lH9IEd+gOuc6xTeo37kk395ECyC+gsplMfUFWNCsOs013byOdaNfkF6nvYLcWowWwdwXzRJMCrCgbyJF3oCpSe64pt3I66GvMVkroAcjXoz6gy8HtkF3eKBnIZ0HrI2a1c9GJ/EFT8cvw6toldkJ6C4h7pECrdxE8noiZclKexiSaRPgc6g1ME8k7jvPw9Hd1XSPabqQ5Rxo0OIc9IysPVG/f1mKln9IEd+gOuc6xTeo17ks30ahAcdp3RPtokl1Wp50izjWbX5BvjoN1EV3OAqwHs1I0zXIapI7edJuSv00nAR3fHUXjkMXtCGoW3ArNCbh/egitzKalbAXaoachMYrvOHj4AOMQ9HMiSWoD/toqlsUtslkOQeaHnwTusvYHj9rvAy08h9o3zeJLN9uQGNZjqorgx2MOSby1GknofKaQHoLVsjNqAX/HahVrNtovDu+WrKGon7fcJT+7qjJMZyR8BqKpPdCD4WciAVYRbmM8g937QaynNsWzco5HM2yOR34qIfjDrTyH2jfN4ks37ZGAb3hjjkmshybipb7GE/+YQ97esxfE2m8O76CrPlomf51UMQ8BQ0Ciz448R60quut9D2c0jCKkubcRsCv0AKQM1CAP4/46cGGkYesOm4Q6tpZHz0eZEn7s2h0OGmOTUGtpB9HXXhDg88swe1ReEab8RVkPYxaCuaiBzxOBq5o2WcekuVYT8c0BjZJzq2NHh9xc/A+aLrwNWj6845tz6nRDWTVcVOAs9Bs6UvR2liG4UKSYz1onNEa9D2fL2Rn6l001cigyiUcWrkVDdKzyscwDMMwjK7H94rvrQxCzZ4HoVVi9634eIZhGIZhGI2g6iBrHPA79BDKval37RjDMAzDMIy2UXWQdRvVPITaMAzDMAyj0VgAZBiGYRiGUQEWZBmGYRiGYVSABVmGYRiGYRgV8H+k8cqH53KMJQAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - \\frac{\\partial}{\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial}{\\partial z} φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ " ∂ ∂ ∂ ∂ \n", "- ──(Ax(t, x, y, z)) + ──(Ay(t, x, y, z)) + ──(Az(t, x, y, z)) + ──(φ(t, x, y,\n", " ∂y ∂x ∂t ∂z \n", "\n", " \n", " z))\n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "D_EM_potential = Dq(EM_potential, [t, x, y, z])\n", "D_EM_potential.display(\"D EM_potential\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "While this answer is correct, it has too many marks to be understood with ease. Create a list of substitutions that can do all the basic EM fields." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D EM_potential fields\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAAkCAYAAABmOOTyAAAIvUlEQVR4nO2dfbAWVR3HPw/ipGGWVCNQimajQBIXodBGETTMUoc0UGAkmSEdX/AtqQyULr4MDpDAJJU6jlctGhVFHVABX0iCGxF4ASl8aWLqDlqp1DiFSkp/fM/27Dzs8zxnd8/uPve55zOzszz7ds5+9+xvf+d3fodbam1txePxdE96FFDmNOCPBZTb6HhdovG6iEx0KMIADAE6Cii30fG6RON1EZno4A1A4+B1icbrIrqkATgOeA54F9gGfBk4Hv9AvS7ReF1EbjpkaQCOBX6HbuB44HrgYeBgut8DDeN1icbrInLVIUsDsBh4ErgaeA1YATwLvAH8LeE1DwE6gX3AY+mrWAhel2hc6tKV9ciifVSlp+sLGo4AvopclzD/JZ0VawU+gx7sCSmuUxRel2hc69JK19Qjq/ZRlaw8gKHAB8CWiu3DSH4jg4CrgKeBrUisTyW8VlF4XaJxqUuRekxBRmdUwvOzaB81ycoA7AMOAD4S2nYqssYdCa95B1ACvoseLEiwKFaZOpxXsb0EtJl9tyWsRxqK0uU6U/Z1Va5xHPAe8ELCOqTFpS5x2sk6U3a15dcxy06LKx1GAk8AFwGDgbXAv4EXgZPCB2ZlADahBjUfOAY4C7jf7OtIcL1JwGjgpygZYpvZXs29+x7wIXALEjRgPhLlbhRcyZuidPmNWZ9Y5To/QTpNS1AHF7jSJW47WQbMjlj+YvY/H6NsF7jQ4WZgDWWv4XFk4B8FWoCVQN/g4KwMwC5gKvB14PfohbwP+A/wasxrfQyYB7yF+nZQtuzVHuwW4AFgIDDZbJuBvgoPAZfGrIMritJlM7AHGBFxnfHAGBR82hqxPw9c6JKkncw3x4aXXsCRyFO8ybJsV6TVYTJwA7Ad5Q18FjgaWGD2PY50ujA4IasgIMAvzRJmVoLrzAb6oa/TbrMtsOzVXDuQEBegh3oIcCuyfpORd1AUReiyF9iIXMN+qKGBGvvtwN8T1sElaXVJ2k4CSsgIXmbWVyKXPG+S6tATmAO8D0wE3kTdByh7gMuBscBRwUmVHsBOaveJKpdfWFQsDV9AD2I78PPQ9l3I0n8eOLTKuZ3AQqA/cnHXo5jA+3XK3EljaRBFEl3WmXW4GzALfSV+APyrTpk7aVxd0rQTUPenDb38c5ERqffy72T/e77X7Hs+Yl+b3a0k5jQ08vEU8JLZNsyU3WF+Bx++PcFJlR7An1D2kS276h+SisWojtei6GiYbSja2kL14NU/Qv+eilypejSaBlEk0SUwACNQf3CAOb8duZn1aGRd0rSTA4ElwDjkLc62LHMh8ImKbS3oC3sfMhBhOiyvm5RTzHpFaNtQ1HV4x/wO+v7/705UGoDTExbu0lUqmfWFlF2YVTWOP4HoBzsR9fHeAPqgxIrLLMpPqkEUjaTLelOfwAO4A335rsCuno2oS4l07eQgYCkKtk0Hfhyj7IUR26YgA9CGAnE2uNCihIKGoPYO6vsfhoZDA0aZ9Zpgg6sYQKn+IbE4FAV09qJgXpRIR6FGGdW/+waywtuRa/QC8B1gEbDDcV1r0Ui67EaR8eEoWn468DM0NJQ3rnRJo0cvNFQ2GrgcaVEErtvIR816mFlvNusB6F1YC7wcHJxlEDBgGvrKDIxxzk3oqz0X9U+jGI4CW5UR3pORVe8EzkDdgBtRPvVtwDdj1CNL8tYFFAwaBNyJgkQ3xCg7L+LoklSPj6N02xHoq33//qc1BHG02IK83guABynf72ZkBJeijMJrwiflYQDiTmMcjG76r9QehnkJ9fcGookSe0xZy1FAawzwujl2KRpWGYv6Smtj1Ccr8tQlYB1wCRoVuRZ4O0b5eWGrSxo9lgBfQZNuPkd52DDMHDQmXySVWsxH93FWxLH3oGd6LrAaZUCChrzPRLGOiZQ9AiA/A/BIjOODgM7VKHupGu+iYMYA4Iso2rsSuYFfQ0GrMD9EwsyjekJMnuSly4bQvj+b9UbUYBoRW12S6hEMh4Jy7ivz7kHDoq121c2USi2+RPXYwpuoj387ur9eZvtoFBi8GfhD5UmuE4HqzWMej6xq/9A5i9AD+rT5PRL1i5ZZlDfQHLsBzZzqgwIfUQktz5hji3j56+nSiZKUwrQgrQaZ30l1CRNkSNoG/rKmni7XEz3E+COS6/EhSoYp1VgOT3g/beb8NQnOraXFgWj4eiQaut1HOcchzA4U/xpsfv8KvVcTiXj5wa0BsJnHvNTsD/qe04EJyEUJD9k1Eza6tCPrHmYBSlmOfHAJmAScg4JdGx1dMw02uixGQ1fBsghFuSsTZbo69bT4AMW2QHGLvpS9mCiCgGfdAK/LLkB4HjPoi/wsSmsM5jHvQym5K5CLPgNFJivd9WbCRpd2FIkO+BZy/8alLPtI9OIfA3wbjYp8P+U1XWGjyzuUx7BnAOcjN/e13GqZDzZa9ENabKS+95a7AYgzj3kVuolbgLNRcK5ZsdXlt2gMujfqz85Fga23UpZ/Jgpm/RPlgV+DXTJU1sSd9z4TGchRwCtZVqwAbLUYiiL9Nl23wAB01DoI3BmAWvOYK5MzTkNftx4o2NLM2OqyCfXxhqPhm73oq5CWu8zSaMRpLzeikYtTab4vP9hr0YJ9zsbZtoW7igHYzmMegtJQL0dJGLc6Kr9RsdXlPfRwz0Gu7nRkBJoVW11mARfTnG5/gK0Wg8lgtqYrA2Azj7k/6ufMQ1l6s9Bw3Sk0L3Hmd7ej6Hw7ymVoZmx0mYn+Z58JqFvUxywH5VnRHLBtIz3QMGY/9p+DkBhXBqDePObeKCd5OeWv/lY0KjDHUR0akTjzuzvQEFXlcGAzUk+XEgpWfhIlL70eWk6KuF5XxraNzESzWTtx6DmX/N8GbBhWowDXFUVXxNN9yCMT0FOdHihRYyoa/z2/2Op4uhveABTLSJT99TIa+99d+3CPxy3eABTLGor5+4weD+Abn8fTrfEGwOPpxngD4PF0Y7wB8Hi6Mf8D94IHSR3sk+MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - \\frac{d}{d x} Ax - \\frac{d}{d y} Ay - \\frac{d}{d z} Az + \\frac{d}{d t} φ$" ], "text/plain": [ " d d d d \n", "- ──(Ax) - ──(Ay) - ──(Az) + ──(φ)\n", " dx dy dz dt " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAOCAYAAAC8YEsXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC9ElEQVRYCdWX7VFUMRSGL4wFOJaAHQhUgHYgWoHSgYz/9p8DHSAlQAdoBSAdSAkrHazPk03uJLm5y90fwHJmziY5Jx/veXOSm91aLBZdLrPZ7CvtQ/R9tF/mfuo76Bw9pu9t5dvYJli/Ae4DuhdB3lDex7rFa9TY3qA39LfvZNmqiUwjmegf9eaE+C7wfUR3qb8YMo0NvGbOLeWu7VqwB8Ip1yJyu57INpO4M+7Qle2GnEXbUcO3sSbiSqfs1wqQP/HdrfA3XU0i6fnQghKt/F0WL+Y3ZdlYgqRA1o5rjMiwIDs4dmzNRO+X+v5MQDa1DAlCXEVG0vY4B6FuXIU/ulYWr0a8LjiYjEU87ueo5QHt4ghEvx8rZR/9gpq9n1Hlmj7PSf47MBRxgcdYJa8XbEUCTYlrQCSDXEyiOur9TtGUGEk5w+5XvSUn+MK9GcdKuuT5hfdePUGfhUjWlzBlh7ofS8U4tb+1sUIejGtAJJOlBY9YsM44v9Tn2DvUS7kX2maiRCVxl+1vVio+K3J/MD7hT7ofD8EaMo7SxLiiLOLMMU2Nq0WkC963Jsd2iZqZZqVPo/wI2M4B+bzwmRGODeVYFgfc+M2O36jlVOlJmTAgJAjr9Jip36HFCREHGjDHOSfF1SLSBYvJK5Dpi2a/HFRfj/0/Uf6oxo42I/jm22500HqOwf0Yh6enXCeJ2DxZp2lqbJPiKohkkIspq54H6YjUCyxH8ss8kiyofkOwhUyjzHe7H/OYlYjHJQZx4ctPkSQWV1aOK87TjKsgkkESoBRftqUpECTR3nse2b4PdSf3AvdS1h6eR9RzkN9pH+N7Dkmb32OuQYDN+3KfMs/GyXFtVxP6TBm7HyXZO8xMPEBz0afOAeLi89yJTd91bnviupvfgaN5iiK+P3Tpj3nENzmu8F+bicwmCXCg0h/JZTM8eyTHj0zt67A51i9yuD9pn6KCNxMEKMGDcdgfTSImn19mWrqyagzi3kMtPWXFHR3nmBTXfwC8QZEpaa9GAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bx - Ex$" ], "text/plain": [ "Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAASCAYAAAAjQzL0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADQklEQVRYCdWY/1FUMRDHD8cCGErADgQqADsQ7UA60PE//nO0A7ACBzpAKxDoQDrwvA7OzyeXPN7Ly/txwx0cO7O3STbJfnez2TzYms/nkzqdnp5+oH8MH8Xxy7qe9i48hT8x9zbTbWQXnB8B9gbejwCvkbPYVmzD+rUDXzPfuaNpKw9iWslG/2gXN0R3ge4tvEf7WQRSv8Bqxtwi9+znxHgINnKpIL7IN7LPJp6Kp3Nlv0BnceykoNvIIXxKN+tnD8BzdHc9+qKqGERmDhk0yNKfhXgWvym7uhIjObG0T11BDAY5va6ragZaU/J6mYBsogyJgU+NTKTvFQ5EW58a+qjqFS87tBpsbYYRr/h3WHlIv0r9qPNRegXf0PdqBErrkD5YT0WvMdzwCTz6aeAqYqxKnIh70KdWEFmoMYM0oV2dEt0D2Gt8xngpGJ8Z98X2wTHQVRBpv4MdfxICk8GSdmn7KEr66LiH3kWjfGoFkd2SwRMMVpmmFfohQEjbVZBoG/jfzoEsBdPQuv9xrJEF96pHaaV6eAzWkGlIE+IK2fAxoVnGp1IQNTgrbc7YJWxGmo1+/qTUv6u1zbovCUyUHkw+Vk1hrVnxCw43oFL0N6qA9E8L2pAYNYwT2mJu1HT62/As7jfap1IQNdjYPAOZXi/npVMNhgHgmIHIs9SxzkyMwIvfbqxbBbXqYdw0fapNwCBG6983dRGTctCnxuvMAo1JfZ8B6WqkLFysWPxaK/2YDUGNCkGY2aX5ccr6RAyCBlo+oatfZQNYHX4N0aBPjSCyUIelYtZg1CBbFw1UaY51pg6MbqiRpbnqHoPSoXdiwBdxHyDrh5+wDfqUB/E9K7vqoQG2bplRh3CJGgEElGvkVhaUFq9pLHwVgKV4EyLGG2xXVzvDMehT+NuZjXz2rQkpE/Oa6GlMYR+UXMfwgtC5h583Gv4L+/kQvrPQNcAwvjaq4RB3KlE5brHuw8q+v6cHfer8BwQbP5hw5iubHCHX+Wg8GOcyG5R8yq/zMvs15ro57LUIRNsTNAs7P20WMzf3d6xPKwsiobD2/KiFxGt9DpD8GtWmbHxzlE8ru84ES4M7sBloLbxgrPNFRL/xNNan/1YjVAVfRwKHAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle By - Ey$" ], "text/plain": [ "By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAE8AAAAOCAYAAABuMEFPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC4klEQVRYCdWX/VEUMRTA9xgKQOwAO4CjAs4OYKgA6UDG/+4/BzvAq8DRDtAOkA60BKSD8/fLJctmN7t7Ojp3vJl3L+8jyftKsjdZLpdVE+bz+Rv4M3AW5V+aesYH4AN4he19S7eVLH6+xbHX4DQ6eAd9jGPJHmhc++Ad9tqOwqSdvDSDBX4xLi6E7jO6U/CI8bNIoHHhq51yDz2SbwPykGToWsnbaS8gz2SrYDVu5QtwE2WXBd1WiogpnaSvAw5+RPdzQJ+pisnDYmwjkyv8WJFn8Zu6qa8hUhBrx9SXvLAR1eo7knacd0b7PkwObCMNDUFMWefBe1QDMDamTB9VRbJblK46r7MIi3uUF6D0BL7T4sgO0XknCmfw3jF26gzqsdgU6FcWE/6YUBNWg/7WDAP43ng6D0Y0/s48N2q2+DG8SbjBppgE5Cb1G/gJfAm6sc4coPMF3wiwt0kyFoudkqOvyl+h7zQB8gr5YDylznNB4bK9KLwv7AJagaUE7qO3I+tqMr5GdgFuEtJ9F06CjuCXjXALLSYuOjsYT6nzrNCURV/EBTKC3GR4Twx+pmBn1d6B7xnXyYTvQLS1Y52zLtSJGJvA+p6kQ+ikaQt/DV4lGeM9sOirOuyyePo6b+ghSK+RHZqOQNo/UDayqqfQ2rHMoMVEh4vfXi3Tv2W9PrL7Li6UPrkqfDA5/kH4EHU1QVeMZ6e2YICRmwjNu24lefpNR6AvcSZ1xlq1E4z/pKOedvoHI/bWH6ETE7rmkTVxnasozi/GkyWPyWmjUpUqFjK53nu+oB0bZOps/bYTC+SbglTsjr/JIfy1s46h2ZEdi2c3LRDpOfSRSc2KBBUyE+sniB13EoSNH/Qm1u8/Eyu10r64JnRjL23cv8KnoZNiXJmP68QTkoehkz1a4dhGHrYGK/MAXqDruw/P0YUqQ8OrjL1F8NUuOo7uvwD7GYvdrt9ihSx9e8oK2kwjLZ2k0Xh+AwyaLXw9+MnvAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bz - Ez$" ], "text/plain": [ "Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fields = {-Ax(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(x): \"Ex\", -Ay(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(y): \"Ey\", -Az(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(z): \"Ez\",\n", " Az(𝑡,𝑥,𝑦,𝑧).diff(y)-Ay(𝑡,𝑥,𝑦,𝑧).diff(z): \"Bx\", Ax(𝑡,𝑥,𝑦,𝑧).diff(z)-Az(𝑡,𝑥,𝑦,𝑧).diff(x): \"By\", Ay(𝑡,𝑥,𝑦,𝑧).diff(x)-Ax(𝑡,𝑥,𝑦,𝑧).diff(y): \"Bz\", \n", " φ(t, x, y, z): \"φ\", Ax(t, x, y, z): \"Ax\", Ay(t, x, y, z): \"Ay\", Az(t, x, y, z): \"Az\"}\n", "D_EM_potential.subs(fields).display(\"D EM_potential fields\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first term is a gauge field. For massless photons, the gauge field must be set to zero. I suspect a non-zero gauge field may be used for particles that are not photons. Such a link has not been created. Note to self: see if the gauge field is invariant under a Lorentz boost. \n", "\n", "The second three terms are the difference between the magnetic and electric fields. To this day, this strikes me as _stunning_. Nothing was done other than take the space-time number derivative of a space-time potential and there are the two fields that make up EM. \n", "\n", "In the standard approach to EM, the difference of these fields _living in the same terms_ may be considered by some to be an abomination. The electric and magnetic fields are normally carefully put in separate rooms by the anti-symmetric rank-2 field strength tensor $F_{\\mu\\nu}$. The reason the standard approach must keep things separate is there is not general-utility rule for forming products as there is for space-time numbers. This is the non-trivial difference between working with tensors as is done today and trying to rebuild from the ground up with space-time numbers.\n", "\n", "Make the difference in EM fields gauge-free." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gauge-free EM\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAOCAYAAAC8YEsXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC9ElEQVRYCdWX7VFUMRSGL4wFOJaAHQhUgHYgWoHSgYz/9p8DHSAlQAdoBSAdSAkrHazPk03uJLm5y90fwHJmziY5Jx/veXOSm91aLBZdLrPZ7CvtQ/R9tF/mfuo76Bw9pu9t5dvYJli/Ae4DuhdB3lDex7rFa9TY3qA39LfvZNmqiUwjmegf9eaE+C7wfUR3qb8YMo0NvGbOLeWu7VqwB8Ip1yJyu57INpO4M+7Qle2GnEXbUcO3sSbiSqfs1wqQP/HdrfA3XU0i6fnQghKt/F0WL+Y3ZdlYgqRA1o5rjMiwIDs4dmzNRO+X+v5MQDa1DAlCXEVG0vY4B6FuXIU/ulYWr0a8LjiYjEU87ueo5QHt4ghEvx8rZR/9gpq9n1Hlmj7PSf47MBRxgcdYJa8XbEUCTYlrQCSDXEyiOur9TtGUGEk5w+5XvSUn+MK9GcdKuuT5hfdePUGfhUjWlzBlh7ofS8U4tb+1sUIejGtAJJOlBY9YsM44v9Tn2DvUS7kX2maiRCVxl+1vVio+K3J/MD7hT7ofD8EaMo7SxLiiLOLMMU2Nq0WkC963Jsd2iZqZZqVPo/wI2M4B+bzwmRGODeVYFgfc+M2O36jlVOlJmTAgJAjr9Jip36HFCREHGjDHOSfF1SLSBYvJK5Dpi2a/HFRfj/0/Uf6oxo42I/jm22500HqOwf0Yh6enXCeJ2DxZp2lqbJPiKohkkIspq54H6YjUCyxH8ss8kiyofkOwhUyjzHe7H/OYlYjHJQZx4ctPkSQWV1aOK87TjKsgkkESoBRftqUpECTR3nse2b4PdSf3AvdS1h6eR9RzkN9pH+N7Dkmb32OuQYDN+3KfMs/GyXFtVxP6TBm7HyXZO8xMPEBz0afOAeLi89yJTd91bnviupvfgaN5iiK+P3Tpj3nENzmu8F+bicwmCXCg0h/JZTM8eyTHj0zt67A51i9yuD9pn6KCNxMEKMGDcdgfTSImn19mWrqyagzi3kMtPWXFHR3nmBTXfwC8QZEpaa9GAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bx - Ex$" ], "text/plain": [ "Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAASCAYAAAAjQzL0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADQklEQVRYCdWY/1FUMRDHD8cCGErADgQqADsQ7UA60PE//nO0A7ACBzpAKxDoQDrwvA7OzyeXPN7Ly/txwx0cO7O3STbJfnez2TzYms/nkzqdnp5+oH8MH8Xxy7qe9i48hT8x9zbTbWQXnB8B9gbejwCvkbPYVmzD+rUDXzPfuaNpKw9iWslG/2gXN0R3ge4tvEf7WQRSv8Bqxtwi9+znxHgINnKpIL7IN7LPJp6Kp3Nlv0BnceykoNvIIXxKN+tnD8BzdHc9+qKqGERmDhk0yNKfhXgWvym7uhIjObG0T11BDAY5va6ragZaU/J6mYBsogyJgU+NTKTvFQ5EW58a+qjqFS87tBpsbYYRr/h3WHlIv0r9qPNRegXf0PdqBErrkD5YT0WvMdzwCTz6aeAqYqxKnIh70KdWEFmoMYM0oV2dEt0D2Gt8xngpGJ8Z98X2wTHQVRBpv4MdfxICk8GSdmn7KEr66LiH3kWjfGoFkd2SwRMMVpmmFfohQEjbVZBoG/jfzoEsBdPQuv9xrJEF96pHaaV6eAzWkGlIE+IK2fAxoVnGp1IQNTgrbc7YJWxGmo1+/qTUv6u1zbovCUyUHkw+Vk1hrVnxCw43oFL0N6qA9E8L2pAYNYwT2mJu1HT62/As7jfap1IQNdjYPAOZXi/npVMNhgHgmIHIs9SxzkyMwIvfbqxbBbXqYdw0fapNwCBG6983dRGTctCnxuvMAo1JfZ8B6WqkLFysWPxaK/2YDUGNCkGY2aX5ccr6RAyCBlo+oatfZQNYHX4N0aBPjSCyUIelYtZg1CBbFw1UaY51pg6MbqiRpbnqHoPSoXdiwBdxHyDrh5+wDfqUB/E9K7vqoQG2bplRh3CJGgEElGvkVhaUFq9pLHwVgKV4EyLGG2xXVzvDMehT+NuZjXz2rQkpE/Oa6GlMYR+UXMfwgtC5h583Gv4L+/kQvrPQNcAwvjaq4RB3KlE5brHuw8q+v6cHfer8BwQbP5hw5iubHCHX+Wg8GOcyG5R8yq/zMvs15ro57LUIRNsTNAs7P20WMzf3d6xPKwsiobD2/KiFxGt9DpD8GtWmbHxzlE8ru84ES4M7sBloLbxgrPNFRL/xNNan/1YjVAVfRwKHAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle By - Ey$" ], "text/plain": [ "By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAE8AAAAOCAYAAABuMEFPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC4klEQVRYCdWX/VEUMRTA9xgKQOwAO4CjAs4OYKgA6UDG/+4/BzvAq8DRDtAOkA60BKSD8/fLJctmN7t7Ojp3vJl3L+8jyftKsjdZLpdVE+bz+Rv4M3AW5V+aesYH4AN4he19S7eVLH6+xbHX4DQ6eAd9jGPJHmhc++Ad9tqOwqSdvDSDBX4xLi6E7jO6U/CI8bNIoHHhq51yDz2SbwPykGToWsnbaS8gz2SrYDVu5QtwE2WXBd1WiogpnaSvAw5+RPdzQJ+pisnDYmwjkyv8WJFn8Zu6qa8hUhBrx9SXvLAR1eo7knacd0b7PkwObCMNDUFMWefBe1QDMDamTB9VRbJblK46r7MIi3uUF6D0BL7T4sgO0XknCmfw3jF26gzqsdgU6FcWE/6YUBNWg/7WDAP43ng6D0Y0/s48N2q2+DG8SbjBppgE5Cb1G/gJfAm6sc4coPMF3wiwt0kyFoudkqOvyl+h7zQB8gr5YDylznNB4bK9KLwv7AJagaUE7qO3I+tqMr5GdgFuEtJ9F06CjuCXjXALLSYuOjsYT6nzrNCURV/EBTKC3GR4Twx+pmBn1d6B7xnXyYTvQLS1Y52zLtSJGJvA+p6kQ+ikaQt/DV4lGeM9sOirOuyyePo6b+ghSK+RHZqOQNo/UDayqqfQ2rHMoMVEh4vfXi3Tv2W9PrL7Li6UPrkqfDA5/kH4EHU1QVeMZ6e2YICRmwjNu24lefpNR6AvcSZ1xlq1E4z/pKOedvoHI/bWH6ETE7rmkTVxnasozi/GkyWPyWmjUpUqFjK53nu+oB0bZOps/bYTC+SbglTsjr/JIfy1s46h2ZEdi2c3LRDpOfSRSc2KBBUyE+sniB13EoSNH/Qm1u8/Eyu10r64JnRjL23cv8KnoZNiXJmP68QTkoehkz1a4dhGHrYGK/MAXqDruw/P0YUqQ8OrjL1F8NUuOo7uvwD7GYvdrt9ihSx9e8oK2kwjLZ2k0Xh+AwyaLXw9+MnvAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bz - Ez$" ], "text/plain": [ "Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gauge_free_EM = vector_q(D_EM_potential)\n", "gauge_free_EM.subs(fields).display(\"gauge-free EM\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Take the derivative of the potential again, this time reversing the order of the differential and the potential. This will flip only the signs of the curl or $B\\_q$ field." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gauge-free reverse D\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAOCAYAAAA/pHIsAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDklEQVRYCdWY0VEbMRCGD8YFZFIC6SBABSQdhKSChA7C5M1vGeiAUAJ0QFIBhA5CCQ4dON8nSzc6+e444sOYnVlLq9VJ/2p3pR1vzefzaiyaTqdfWOsQfhfXvCzW3kGewcfMvS10GyuC9Svg3sN7EeQN7X3s27yCte01fMN85w6mrTGdkHYFxF/6rWDQXaD7AO/SfzGO0DbwGrG3tLvKJTEenEX7KCdslwutKgPAiDAyrjrWOovjRx36jRzGrpTdP3sA/kB316NvVY3uBHZ5CKxOkv4smhfzm6K7K7iSIY+26ymcEMASOV1XjRngfVq+F8mITW1DcGFXIxOQvYIC0deuhj6qeptJr/b/lIJdAgJAr6hz2PYAuZG2Ue/DLu3Dn2Gz5hMsXTPnOR33FgwNu8CjrR58TYw1gm+IXaM6gQ0F6iFX9OsIQfRQPdAzxq2e2ugEXXgn4rc6zIO3kvIdOYGfxQns72FLO/QtLCTtdPyNQg89aNeoTgBIAnsE2DLSrYjOGa9gH7CakM0ADzmR0eV8s0Gy9Mv1YXCNP+k9OARriHRag+qKtmFnjmmoXRMm6tFfcIjgfJGefg2mmCPY+zZgjF3CZoTZYPmap61ybowloKWgzqhou7JHtfoxbQhrFj8huNinxkz/Dm5kpjjggDl+P8guneBHrXVvAWSIKNgGsOKjVDk4Lzeo7sf5H2m/F992iiPb0LbP0nsQJ6VyuwKDgWBGn6YFGBtk1yR9sGrLhgKV+kq4lNYluMWX/LKODtKg2pmMKaszYNZKEY97LtmFLs9eHdC4ZnOgcZ1Wu0ZzAht6eFKjglgMhQPUSd7zXjP1HPoC87HzAXM8lLD0cwO/IR+jew5KgVNjLkGAzfdhnzbPgsF2bZcLriBbSna9BzrId8cMOIBzUifPMELgs1zJmLrrfGzNfQOnAkdr9kZ8v5lSX00R32C7Vv7vCBBGsYfnplJ9jSzEUJp6sD7Ipa5izG+tfMJ7gXwKa7gRqHE6Z+k7xp+MIiZLZCM8XbMlBnHvwbZmd+NdjWsMsusff05JNLzNRWIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Bx - Ex$" ], "text/plain": [ "-Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAASCAYAAACkctvyAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADVklEQVRYCdWY4VUUMRDHDx8F8CgBOxCoAOxAtAPpQJ/f+ObTDsAKfNABWoFAB9KBeB2cv18uWXZz2ds92YNl3pubSSab/CczmQQ2ZrPZZCg6OTl5z1xH8GGc8yKbe4f2HfyRsTeZbZRNcH4A2Gt4LwK8Qk6jrtiC9WsbvmK8Y3vTxpABSKsC4i96EQy2c2xv4F30ZxEE/QKrmXqD3LWdE/0hUMiVAvAin+ihbQCYDWbFZctcp7H/uMU+um58Sif6xxJwZ9hul9iLpsEDwCpdYA2Q9HsunsVvyuq2pEpOrOzTOgIQwJI1beXFzLeG5vdDcmKMMiQVPjVOAG3LTiB0fWrYo2mp2Fxq/T+jYBeAANCy9A1WHtCujmu0eYG/hK9pe5wDpe+QXu5PRa9YuOETePTTTa+IvirpIu5OnwYNAIsK1A2eoFfZQXMftvSc0l/ayE/0+zLycjZIVQDQ38L2PwmByY2WdtB9QEj6aL8J00a9fBo0ACBJYI8BW2W4CGmHzUWqVxuMbtB+OQayfN0F7f7Hvkb23ZseRUv1/wisIcORJtMlsuFjQrOKT5sMNpo/4ZC5aZIOWYHJxgl2WgJG3wXsSfAU+ERNx/W2ppvtn7M5DWreVw3h2yHxV/PWlJBUNYwTdDE37jDaW/A0ftfbJwPgR8W3bQ1EX1WwDWDZh+mV4LiUTQE0OOxzM/PTYV/rCRgYP0st0EL9jyPSc3oCBjFa779qi5iUnT4N9gpiMYFKy55q6Tin7J9/Mf/1bvAPnRCQaNABT1RpfByyPhE30AUWfMJWLz9ufpU4NUSdPg0WABZ1s6RitgLYAHkPuMmlMdbVulM0w51QGqvtMSglTCsGfBH3PrKeOAlbp09DBuAdq7bVf4PjPWMmH8Alamw+DvmNvJB9pY/X1BdeX2ApnsCI8Zq1q3KU4ej06cH/CwKETzNrYDoB+R1gFtzBXr65je45YXMOn6CC/gP7xAvvaGwNR+hfG9VwiDuV1Ry3WPdg5bL/D3X69OAAAGAtxEZ8YeJD5FAPhLXgXGXSkk9DlqBVsDTGCgz2KAdCN3PM/tbn53zkeH/7+jSKALCN1trvte20FJ3hRH70a0NGr/byaRQliI0W7DZs5lv7z+lrfXlgHz319ekfZgpbqLAGqKkAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - By - Ey$" ], "text/plain": [ "-By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF4AAAAOCAYAAACmXKuZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC/UlEQVRYCdWX7VEbQQyGz4wLIKQD0gGYCnA6gKECQgdh8sv+lyEdEFeQSTog6YDQQVICoQPneY7d4z72zs7cERvNyFpJ691XWq28Hi2Xy2woms/n71jrFJ6GNb/V1t5Hv4cvmXtX822lCs73AHsLTwLAW+RDGCt2YePag2+Z79yVNBoy8XE3Nv/DOAkC31d8J/Ah4xeRfOMCqxV6hzxUrxP2/ICQayV+p75AX52NPX2r4KZlretgv2jxb52ZmOIN/t4B7jO+3x3+imvwxLP6KpAejPTrUbyIz1jFbcUUg1g7pudIfA6SKmlrI1a6PbLe/yP4bZR5MRFTpeLRbS85MTamij+4kmKctPYzCrIBAGC2nwWsPEZvXEtsB/j8DZBO0e2p3pAp0qu8KRJXJSbwGKfJLki8hcIAvTWeQX9cw0Y/2VOQ5Wt5hG4Cr5mTTCB2D+QH/AV+DQvaQPbx+VLaCLG3CTYWCyUmVqza3+BvFBD2DHtnPGMnDUiCkS7qgNB9ySyQGZxK/h5+b0JRRYyvsJ3Dm6TY3/MbKBBwWUQ3yGTSA9jOeEaz2SyejHJdKkCUvwAQK2OCfFW2xzF2E2lf7HxKMk8sH+CPjIuDQG9QmOtN6Y2/sTgG1vcGHyBHZT/6FXwZbYx34SRWfcyrxDMOk5Nv07joP0grvutHM/7qOy9e28ry4LGaTpBFUJUJNWVg/LXVc9WWV+nvYVJ8FmdgMLH+efwUfIXAl4xnp5jRc8AGApTKvf3R8vQZr21b0j2QKWsVAYSgnlb4jyP2Fo/UiAlfuc2Y9Eb7DN9PxjNY4tk4gkxVRwYID8Y+70ulMQebPq9rPYAF9k1RLJQG3ggIvFb0EbLSZlbFM44LDCDPWOOBDcuVkC+LzUPxmWilH+fG0gd+D8X3vYeitMJ82XgYG3vRhP0zMHXdUOOqYFwnnt6JZxM3tsflrSboqAVZEffwOb62/n+GL68uZP76Yb4H6OsoGTS+ZyH2MxZvmbjlDFv8b6EqOWcSZOoGr4znL7EJMh8cB2AdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Bz - Ez$" ], "text/plain": [ "-Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gauge_free_ME = vector_q(Dq(EM_potential, [t, x, y, z], reverse=True))\n", "gauge_free_ME.subs(fields).display(\"gauge-free reverse D\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Form the product of these two fields." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "EM invariant, Poynting\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAAXCAYAAABH/vc3AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAHcUlEQVR4Ae2d63HdNhCFaY0KcJQOnA4SuwIrHfhRgeUO4tE//dM4Hdguwe5ASQV+dBB3EEUdKOcDAVyQl7y+BF8giZ3BBQgQ4B7s4WIJUvaD+/v7Yg65urp6qOte2ms/svkr1d/Noc9U18y4zUxvxt6gzTbfls0P2fvUTMU8P2+l2Gt3aZXfqfxV6RdXt9I845ZhN2RvaJxtvi2bt9r7BDbMJBe66c6Da79V+ZHqfg3q1ljMuEurbsXeoM0235bNW+09p8Mluv1S2mFTvxn3psxtwGabb8vmrfZ+MNcebn3+FdkS8TxTvvYthQr0jHtb9sb42ebbsnlo7709XDVeiBPPldzj/idIEggvPG6V3ujcb0F9dFHjsI3wTOm36EEG6Dg19lRwM3VTYk8M9x+C/7vSY+ZBwlNX+OKWl7tw/ow26c650bJV7Bl36dtaI1xN0H9iVSPB1PZRbcZBqtzL6ao/ZOaF2XOVQ6Krah6RHqNjTxE3sz029oRx87nON+nXuOir3jhm5dEOd6vYM+6db9uLcO1NhxNkZb/huEFwkDhc9ipIUWINQaRsSGyPC+Xfuw6oPkTkvHR737VveL76j47dXiMp3MzB2NiHxB3arG9Zermnub8OjAWvore7too94676tkaHK2L9iIA4JeSfMuv+aw2B48bxuC8TcN5vuo9merBAkPrKqNgTxs28jYZ9BNx97Rz2d1FrW4Dhzo3i+1axZ9z7vu3EMamWu4izbbsAx8jjf31/tzbMwUO+ueUGJ3fpQkZi3DllbOyp4mbOx8SeMm6z0Ih7lQhXx2wjGLG8rLS7tiPyrWLPuGu+7bSFLBBwj1wiHRHkByXypzquPPrbdl66IU+UXikRDb9UQj7rHOOklf9UViX32xl7gJtHzq869tsatu2Dcl5EFspTxY16nbFbTDyhsK+PsBfPXih2P1du5iJx3Ohf4bv0ZS4qi7/qfACiMvfA0rkuCEUn7AHupXO9E24mChH+Xlw/LYfZ/doBIROD+xVehzhQbqJ3qjfOQ+W6+L+wsH1xzjhZtg3YPuDTrz5Rcf16gx5LRyYzBvulxci+Npi9w1X5hRL1SUssdvVjvsCMfX9WggM4JvbT23ii5jREOuJYEfR1iwaYqD+0Z7torgM4EvsauB5lc81Xb67vOVxLNOzxWheoR7DGoai+UAqdCses9jhUJ3cqcD5RLnKmFLabysR+nCGOxi7cOOnPFgeP5Lc1TNRVoqdaeyqHnbFbxbErTzvY24jK2NnZ3dYmm2EfxETmFKQ/gcWN8gr/aUNUvwauA6UTduFeC9c74WairPTmepPDRZm7JrKp7pMSkS5RLp+M+Ucs1XEcEpTPa3i0NDei8kGiHY1DJOWcg4pemIxC7U1fTaDHMdePwf5dY7t5IJq99hqVBXSt19VO+fGhrjEmbhSIwV5IL29zlYkALpWuVfYOmMFjxY75t/oz9rHinecRHQyXdB1nw0JlbFp5EtPxQyWHaSqugzkl7FNxPTXchkbwwvEJPqjcmetNDhcCVsjmLmJz96aW80KS+rI9r8n51IbqfiigTQ61UD3RNI+Ff3Yf1ffojF3XMzehcvpiBB/5q46IgLreEa7GGhO3VDSLWGe70xGRfkSF/KVg7FcmZpz6j8Zjfhu/ja2fG3mMjZrswwJnRDpgQ6Jawy0dT8X1pLBbWxTKx+Z6UrhLFux+hT+a6ye7YcxNA/mQmzJr/HXheJ10/uTAIP4GVh0RAsRNUqRbX+xE0D6ityAhJk8LrXOVwmT0xa7+4DxX7hc7lZO1tZtzqzeHe3xXm49m1I6z9QspHZzYMcC6GK6je0/sS+Y6XEWibG7nLZrrFYcrJZwyTSs+RsIpEUniWPw5KuNM2fNy/YnGcDQhadlsZ+VKVZzuHleoqHRvxB6cw6oX4qWJxalxPBoTkmjsmhf4gP3rDokXaamLCx5abSRc2PWJcsNd5WvgOnbpjD0w5pK5Ho1btu/N9dNgEiny+VbdUZpTdDFuSt7iEq09NZW7H9pIfI3Aan+7a/KrqXuxFDalVI7F7jDgbM/cgZ0v5qRxK8Cdl0gehV0YWYTAxwJMTtTAlwoQ85g9c502q6BnId0bn0BU7zgfYlkD14Edg51+yJK5HoVbXBiE66fMngbDkeIoGdQdU3TCioYT5X9k8I9OrlE5EQIRDmSkP2/5iXjZB+Pj51uVm/px+qwivfpid/qzd8n3tryh/1fJfVLUGj25jnPlA2B/qTFMxKAcIhPVcjNi/0YnNhdWd13pBc/RE06TCtXBgVA457ESeeVpTsdL5npf7IJvZFFcH8DmgB6E663/eE05r8v51aRyw/d9aTYYYOmD4z1XPuYLnyI13INNYB5oMTMwFdcXMyEHFD050La0pjspTJpcIJwSkbwRlYkkeNFyXdaM+jsb7lFR5cGTnIGZuZ7knHRRymwpdOmQ6rkiwpyP7kTX/jMilXlkfS+dRt9GmRl3qnTIeo03A7NxfTxI0428mi2F6aZs/0pyepCQF2ZEtuzdfsyOULOQZXUzkLnez6T/AyRzEXqug3ySAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bx^{2} + By^{2} + Bz^{2} - Ex^{2} - Ey^{2} - Ez^{2}$" ], "text/plain": [ " 2 2 2 2 2 2\n", "Bx + By + Bz - Ex - Ey - Ez " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKsAAAASCAYAAAAkLS6kAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFWUlEQVRoBe2a3ZEUNxCAh6sLgDpnABkYiIAjAzARYDKwi7d7u8IZGEKADMARGMgAMvB5Mzh/35yk0sxKMzu7M8Nema7SSeputfpPLc3W3bm+vm4OhYuLi3vI+D3IeUh/5Rz8l4DrdOB/BfGMdh4I7zsMTaO8QRk9/sEp+/0GwxOaugmfaJt2dPPnLp17ntE+wS/vUQK6Ha2vl/bznUOTNTjvzzzAjF8T6TZBGH+sRR3av9CKyQHtHbSntAeMi0lfk1vDI8eT+YX+QYkHfNT5KJMV/UzUo/f1Un4+KQVtIs7EfJmvQVmrrJXLhCtCcLwV7UORgaAEfEd2hXcUzX6xilcPD0Le0L6NCjuAQT1o3iz7wNH7ekk/z5GsJsFXlDTxcjAp7oK3GpRgLHniuq+lxXvgYrWsHY4ocq79orx+r5/6vurz1Oa3wdeL+XmOZDUpv5GUm4qHa4FpjWJd7Yq3oiqz/56tbDOKbg8H+3UqK3Ov/haCDR16pB1Jfxt8vZifTw8NAgH2Q6kEP4uEXktGjdpKDPhN7rc0+8fM07UcaF6h92mfmXtttxDX0Q/p09kPXnXwQCQAt6UvOG2JT5pn8tCs/F7pSYckZKEBew3Z1kDf0j2oMtnX0QRkTrVd/kl+Zg9jPRrXg5M1GpX3wUCDGX8hyMlNoKug41TZmD6iuc6PiFJgXoH3VwY/vEzoPFF+YS5+C+A3WMI9xjHp3F+8iV8F+OVzL9/QP9FegzMplFXSEdJ6gA4mxxK+bpA9yXb49/XzTnFdJFlxngnxHuX/qIQtGvUSnlQ55WXeJiK945SMjA3K30GeT4irMI6duM6JjgT6+I5qq6J45BngD/Sd/aX14Iy5FX4T8Yz90HkR59+5n93XmT1TbZ/sZ3y5c1xPYfb0/EWz3xVS0PsLkGcF8g07VHU0agPPVqKAM8mtsFZXf9aKV5sy49gqeknLwQPQx0V6eziy9Q1j5XXew8z9IExJ6WLmSUfpoF7RLvt88uYAXT/EQ5mTTIAGeulXDp8XQ37L5ShjKV+3+yB/qu37+HnnuJqsBqf4u2PHMztMkOW744w+nrDaKo3qJEqPMX6Ry9cmaNCzoRdn0vSrrrhaZfX0lmgGuwXkul79i7cBdCvxU/ri06YVkv2Br5SMDXhvDp8QxX0yEYND1i/m6/7G7LWr7ZP9jGzzr6EfjetJX7F952xmEO7Tp8rA2KBoaALmGiQM/YQUkz1W0psVN3+VbwVqjQwEDbVSb/GDkyZs7QctVQ7oBj8dABdECDLO6VOCMTa5vwuw91q+bthL/43aHvj0x75+Ho3rLMmKoibgI/p+1dGpV1qQQUyeUqVrgizXmZAlHpM/TzJFm9wl3kizr9HdU5nqnx8A10hTF58H/UT2o2t1QI/VfD3R9lhg9vIzjhyN6+mh3sYgN/GR/5FxulaD3M6JDLjn9LX3qomsLCvkY1oJTNSzSGDP9uQzL1674E22Br6tqhvwcc90I4gXWGNiKNeDY2/V8BcBZW7xg1sU0GE1X+9h+95+Dk4bjevBycpGBlAneo32ISUIxpuEXp0mQBPmDiMowyr8AtrQe9bq/RYev8j/ocWfntKJhuY+Vj5l2hpw7p+DPA9p9rUq/px1bcWgNxjK1Kn+ipFsY74WrOnrUdvxwVx+1n+jcT34H1nWilJtHxxm0p7Tz/KRWNtnLjx6mvQHf2DNpc+xyinF9eRYlS3ppQG0z5HG2JNtRb+MuFvQb9DR9gOCB3aN6xzPgDWdblXK38Vey28wdujZsKZ+o3uha3qujDL/fxh2iuutegYQaI3y48qK6lv13Y/g44VbDrvG9T/edhVdV7zI1gAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 2 By Ez + 2 Bz Ey$" ], "text/plain": [ "-2⋅By⋅Ez + 2⋅Bz⋅Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJwAAAAOCAYAAADaFnUFAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEqUlEQVRoBdWY7VEUQRCGV+sCsDADyUAlAjEDkQjUDLT8Bf8szUAJQTIAIwDNAEPAy+B8nmFmmP2629u6PaCr5ma2u6e7p/vd3t17tFgsquPj42dVVX1iSC8Z14xP8P/IaBL89/AOGPtRdtrQ0d5SGw39lZf4/IjSa4bxSZeMeVjd/Dxh0u8O4xJ9de8dEde9zvXUeX50dHRkAr6XBWL9FV4oMOvzvqoh+4ess7jIfiJ7w3jBuhO4fXaX8bG1QP6H+UWXHvwU970DHLE9mFxPlefHFE1wfSiLhzO7nd1D0HRSTJ5d5axTARBHfs12j+4gNj5TR+29CTD0g/F3kMHtKz2IXE+ZZwFnEa9wInhKsqhPIrBKflqvKr53s3R1M23kN3WtPpAnJ5v0mWxuYn4ouZ4szwJOYP0FWHa0LmoCMemEoNjX97i0s2mz+X6X9o+ZA8jxWetwXPsYDRTPUZMn2T2YH0quJ8vzjAL58t9Fz2Ui7wOUQbUKi74APWE4v+K69niLcj86pD3GO4bd8JAhXaDTB1JjqvlE1zgEdiZ4rZjhuTe9Ihyow9DvPrOP4ckJP1vNdToQftc9+6g848eaL63tLAVVzjFAi5G+XEtxFeUad527C5cCyH1+hPQl9yuy8F4X9wpOQeZXse99vue0AIcs3HXInrFOwDEG+buMXkJfPf1o/ynDGASltvriRDw94d/iTpXrCvtrnR390XnmHCtr2wk4NlrQU5x/Y+6iFNQHdJodzC/TE/gVo9Y5uBb9AirRnIX6djlph1HKAzP+pPeK0J3kYc9CnTHXYoj65aRdu63+ArHWT/IbuXcyTZLr4iTrnn1UnsnnoNq2AMdGu4DvdMvufIOao9MqNDyBaqezy/mXSfl487rc418bPtoCEJiX+QwgL+1pi1Hrhlz7oZOBhf2K6+xTOazPjC9NPXVLirq/4LlnKOUbYtUG7E+Z6+AeH+uefWyeB9W2BjiCE6U7zAnlfTkzqFqhG4rpK1G9DDjs5nXUf8v8pbG379JHT+39LSpatEDYFxieobMzI7cjvmHufFUIRoof9ARu5/99hdqoJbYnzXUzqDXOPirP2B9U28cpMDb4aNtlzl3GIB1Jx5lrA5KW/TWRANsM4mYnv9gRjAIkAxee3anVTaKue1s+keU7GLlFrD3G3SRFG/vMGYysW75utKf9xe9d5Hrl2WOOPPzoPLs52umsbQAcCoJoj7l555uYa40UJFCkrm6jM225z0dl1mEtmHzfSvvD3yZcl4D5zPVc4w1KAM72GvKKfd4YnqG1H57x6L8JRj8ktkrEMHmuywOtefZRecbH4NrOULZQvries86Ppxh07a6IPP++mKNbAiWI4AkmbdnZXgXm7Y8yh1+jor8G5Lj34la9thIwFTqdHTPu1W/uzmk3MgssuL0BnL17/VLVZksf3mSE/23lOpxhxNnH5nlwbWdEZgFMhI+jJuUCE7wFFSgWsIrXLhNpQxC9Q5Yfk0nIbHeywxic+/3CteMJ8t+Ma9Z5H2t92YG066jgGUNJ6rxkONc6aqF0yL5w5zKbUG16s+g/n6/Qn3K5rVynM6w8OznYRJ4H1/Y/MXnvlK+xtEoAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle 2 Bx Ez - 2 Bz Ex$" ], "text/plain": [ "2⋅Bx⋅Ez - 2⋅Bz⋅Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK0AAAASCAYAAAApM17jAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFeklEQVRoBe2a7VGUMRDHH5krgKEE7ECwArED0QrUDnT8xjdHO1BKwA7ACgQ6kA5EOsD/L5cNSS65e17hTt2ZXN42m93NP5s8mXt0e3vbDKWjo6NdyXjv5ewrv6au9kvflmRqf6OGQ6UD3/EtYWga5C2VkfGvrGrOd2J6roR+0LnSjSvNf7aVMe+O0rn44V1Lkm5r7e+pff1oKGi9A7/Ei6zyJ622A4nKZ7WVV99v9RUBor4T9b1Q2lO5CP6a3GXtksUuvVS+V+JTu+m9lqCVfgB2I/w9la+3SgvXsQ2Avo3HSFmiLlEM4BXJO5/odlpk0ML49kR2hbdVs+a0yF7dSBL0VemqlcCeTOihxGnThzbC31P6egzQAoSfUhIAxgQwttVOZCjRKgDZuJ+lwT3bLHrWNoqJHXNOkxnn+Cr3V9y/rLwp/p7M12OAFnBeCZw3FU/XFscZpXG1o58Ii8z8vluZplWz2yiaM4m0qnMlcOTtSPqtb03yTfH3ZL6eDV0ILTIfVCV6QqP6a6DEqAVwiB+QHyuRP1M9Oap9vx2tT8XzWomo/EoJ+iGeGtDRKZlTvOjB5giktqBzNN9jMVyozvXBke87Vl7zgbGOli+Za3R/e/vwdR/bO/saJ0VzUi2u72DQIjknTYzCAMleFBIW3w8oUTJEOVVRknF8aNSA8El97p7rxwJwgMprBfdg7nwLoFUf4IR2Vba7NjrQzqLU6IOXzUchcwXQqvxSifYHJek3lb972T7A1/hx5fpOAlpNDCi+SfnPaFEgA9Bb8eSR1IFD7Y1SDBDq7HpAaUSEhJ9oC+0oxf2u0f/YHetQclwkVc4GOVWe6GCD1A4YfkTjr60vaksid9Z/X9XR/T3Q9s6+xlGas9X6zsRItPmu5CIfg1tQWPicV/KIdtxxa5GSIRh1I54FsKgNsBNxibY8h4WjWm3U4zE8W/F8BXgb5cvmdBtFPEGeyuiZRGXV+Xh08iSSfuMnqn5knoiQmbeFbo3FF7ZBQ7sKbK5G/e7EiDtUxp5ldiTsfo4p/D3E9j6+xq5W6wtoWaDim2XinRYVyWKn7Ci3nVYbhVEJWDJG+3qHz0DTSG4oe/4SkDJRoUrULEVFe1pDPhsXG9wJobptBvSgL0R+9SGPtpJMNVdByTycDlxTaieRG7/qR+Mn87dkD7G9s6+xVXO2Wt/ZKse07deELMRj5SFKqMzx2ygP0VFlDIKWPTsZ6HMj5iP1KzkGpAB+tQEi+pzDjdnzUl2YU31BN/UDggBMBnjCphDRfRvzc1pUdfR8k2Sa97783cn2EXzt/OXlsJ4L67s1hkc1AUB8qjz/8MKx19kcLDZUjFBeFuMASeBRmWOb+6eN52jNrxh8OCSAZSKRbYIgb95896txbDBsKI2nLwY3A5FZlQfDVCQdJ/d3pHtX23v5Wja1Xt9ZpFyvol9sPgTOVA5HrRd2oLb8CORpKgebYxcvgEQW0euZa7z7oY/EKwE7MNkMfqx9NN2NmpfYBI14ilHRj2XecErMh4VfALtjNc+PLqU7qbFNkmtuQHQf/jb9u9re19et13dmmg3IOXJxJEdrTgEkcjaOBmzueuDrMT8yAOJr9YUjIWIgqnF0Y1wjHl4eiLxslAula5XDOJWZiycq5JIataFDTPDsK5EnkT1mUpkThPdYXiZ+KdkT2UNE2vvyt8x0tNL2kXzden0H/2HGLPuXcg9eTpFeH7AaRzQa/CH2ED4favsYOm+NIeRvlsEiKRHJHalMVOZUqT51zTmX/t6ol7TWNJHtg20e43owWIk1F0BUjO/qXDm+akHDVaSr/hr7ENeKrmrCP7rtfZTIx/y/HuQeyeoCGAvHRxgRlrvsyQaBTur2p3W1/Q9Y6Cm1HAIZSgAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 2 Bx Ey + 2 By Ex$" ], "text/plain": [ "-2⋅Bx⋅Ey + 2⋅By⋅Ex" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "EM_invariant_Poynting = product(gauge_free_EM, gauge_free_ME)\n", "EM_invariant_Poynting.subs(fields).expand().display(\"EM invariant, Poynting\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first term is invariant under a Lorentz transformation. The other three terms are called the Poynting vector. It is a measure of energy flux in electromagnetic fields. Poynting vectors change under Lorentz boosts. The first term will be invariant under both time and space reflections because of the square. This concerns some because it means that the Maxwell equations will also be unaltered by such changes. This creates what some would call a problem with the arrow of time. This issue also applies to the weak and strong forces which are structurally similar to EM with different gauge symmetries. The Poynting vector on the other hand does flip signs under both reflections in time or space. Because the Poynting vector is _necessarily connected_ to the difference of the squares of the EM fields, for me the concerns about the arrow of time are eliminated since the arrow is represented by the Poynting vector.\n", "\n", "In standard derivations of the Maxwell equations, one included a factor of a half. I don't see the need, so have gone for a simpler expression.\n", "\n", "The current density is coupled to EM potential. The first term of the product of the potential with the current density is Lorentz invariant." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current/potential coupling\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAAXCAYAAADJPgH/AAALu0lEQVR4nO2de9AWVR3HPyCaBCqONZWkvISjeKm4WGgJSJLdprGsxmDEKB2zoBLMSkN7FQULL6RYWdME1VCZZgZlmDMUNzXiFjedKKkYcdAi7WbIpT++Z+dZ9j27e87uvs/zLs/5zLyzvrv7nLPn7Oc9/p5zo1dnZyeBQCAQCAQCgfL0bvUD9BC+C+wC+rX6QWrESOAAcGmrH6SGBN/8Cb75ERwrRjt6FlwpRqor3RFYLTOZnV1hmv2BHSbdn1aYLsCZwMXALcC/E9emmzwnVpznocAa9C5uQu+nVQTf2oOe4htU61x3uJblGATPsuhJnjWD4EpxUl2pOrDqDQwD9gEbKky3ExiIXvCICtMFmAW8AHzdci3Ka03FeR4qzAZeDXy6RfkH39qLVvsG1TvXSfWuZTkGwbM8eoJnzSK4Ug6rK1UHVicDRwFbgP9UlOZp6KF/CfweOAF4RUVpnwyMB+4F/mu5PhL4F/CHivI71Pgt8ATwceCwFuQffGsvWu0bVOtcd7iW5xgEz/Io69lkFCifW90jdQvBlfJYXak6sBppjr9LnH8YiXZh4nwvYL65dktKmvPMfdNR4wMwPOVe33w+Zq79KHH/l829Q1EX3z7z+wHUbepDmbKncZX53FUp108B/oeGLIqwkkZ5bT+/id37Q+BE9AfabGy+la0bV9+K5NMM36B+ztXFN0hv43zKEOHTtrmmn+YYtHe75vt+Wu1ZxDnAr1Gv0l7gz8AM0v/fPQb4GfAR4PXAcjTEt46uQ9fBFTulXelTINMs0hqdq4G1aCzyQfSSAG5FAnwL+IIlvYnAOOBOYCuw0ZwfAfzKcr9vPuPNPY8l0lkDLDCfWZXIy9ZAZlG07FmsMMezUq7fhaLnqZ7pRjyAvX4/igRaGju30hzfDiwpmF9RbL6VqRsf34rk0wzfoH7O1cU3SG/jfMoA/m2ba/ppjkF7t2u+76fVnoHq9loUdH8D9ZR+GJiJgpKZiftnAl8EdgLXoffSH/gJCoaWoIBjp7k/uGKntCvNCqw2AN9DlTgJRanXom9q9wJXWNI6CpgD/A3NQ4DGt7q0uQg++fRDcyW20nXS3r3AAJPOAuCbKfm5UKTseaxFXbejLNc+hF7wnTTqy5dbLefmIKnmAzfGzq82xzEF8yqDzbeidePrm28+zfIN6udcXXyD9DbOpwxF2jaX9LMcg/Zu13zeD7Tes2koSPoKCjoOmPP3oN6n6cDNwH5zfhLqydqEAvZRwGD0TmYj5y5AAdYcgitZlHalyqHAXqgbey/2wswAXkQNyVQkxRJU0fst998AHA98CdhtzkXf6tK6y33yGYgi2p3YiRq4tRl5ueJb9jxeQi/zBFRHEf2A29HS2euLP+5B9AK+BnwWuBt1H8ef+XlUthMrys/nuWy+Fa0bX99882mmb1Bf53qqb5DfxsXvyypD0bYtL/08xyC0a5D/fqC1nh2Pep8eBa6hEVQBrEdzegagegJ1kMwG9gATgOeAseZa1LOz2Bw7zDG44kYhV5KB1XayxxaTP9+PffYUFBVvMpkk2QHMBQahbrpVaMx1j+Xe04FPAZtRF2jE0+hb3knA0ZbP+eRznDnuxs4I9PI2plz3wafsrkTdj/Gu0OuB1wKfRy+7LIehCP0T6JvTVA7+I4/4O26TbrdT3K8kWb751k1R33zyaaZvUE/nerJvkN/GuZShTNuWl36eYxDaNVfHwM2z7XT16Dvm2lLLtfkOzziBRoBgCzqiHqZoSO1tKFB6CLkJjT2W1pvfo3SiSerBlXwKu5IcCvwj6Q2Gjadj/53WRR7n2dh/X0r6qpq7zbNNoyFPxEa02mIY6RPTXPKJBDvScq0Pmvi3BU2AqwLXsrsSSTUKjaEPRfX1KOq6LcvhwELgg+hbxg0Z9/YlfVVJnDJ+Jcnyzbduivrmk0+zfYN6OdfTfYP8Ns6lDGXatrz0sxyD0K75OAZuns1FvUdxhqFhtwUo8IqzPic9zGf3A79IuT4QBVeRr6PN8eexe4ajlXz/NL+/xhyj1X3BlWxKuZIMrM4r8SB5jc4ENHb5DNr34TMoEkxyMY1uzIcz8huBvfFxzWeXOR5nuXYaEq6qYRnXZ/JhFYqeo2h9Hoqwp5AeVbtyJHAf8B7UBXpbxr29UcPylEO6ZfxKkuWbT92U8c0nn2b6BvVyrg6+QbZzLmUo45pL+lmOQXu3az6Ogbtncy3nJqPgaD5a0edDH+DNaDjPFni8CdX1Yhq9UEPM8RlzHAwci7bxiDjXHKPnCa6kU9qVKievZzU670YR5GbUbbkMuAz4KhovjjgaTRJ7CU12s1VOB2owbXMRXPMBjS0/i7r3kwwzx3WWa774PJMPu9HEwzPRCqPz0CZvZZ+5H1quOw74JOkbx0Wcgsah15fM15cs31zrpqxvPu+gWb5BvZyri2+Q7pxLGcq45lpHWY5B+7Zrvo5B6zw7HXgZcAT6H3ZyKDDaXsA2mfzl5hh5GgVFQ9E7Wg48ac4FV+xU4kpVk9ejSZ176Doeew6K/nYA56OXeR0K6pJ7V9yIotk7UFfhZZafaFlmcvWMTz6ghm0ZGhc9KXEtiuJfsBcXaOy/MTnjHt9nck03YgX6Y7oHfcOZUfJ5j0HfpMea+1ykir4tLHW4tyqyfItwqZsyvvnkA83xDfydc003okrn6uIbpDvnWoairvnUUZZj0J7tWhHHoHWeRUHRAOCdiWtTgItQT9Si2PkN5niROcYnnXegd7UXuDL2meBKVypzpaoeq2g34jUcPBntjajL8nm0/DFagXAf+tZ3ARofXo7Gc6cAf6XrcsY4m9DchFNpjGv65BPnfuADwDuAbbHz0fb9NwNnoPHszcCPY/dEQenelOcs+kx56cZZCVyO9iqZhibQpeGS7kLgLWg32dfRWAoeZzYHj7mfj97Hgw7PWxVpvsXJq5syvvnkE6c7fYNizvn4BtU6VxffIN05lzI8QHHXfOsozTFoz3atiGPQOs+iwGoRqtOFKBgZDbwV1fHExGe+jerp/Wj/pWi14BUoODscDcUlh/WCKwdTmSu9Ojttn/VmEvoXsuehFS+gKHgF6tYcS9flyeORBI+jiG8ZquQLUUOUxVbUvXkWWknjk0+cI4C/oN1sk/thTDVlGWTSnoX2FYlYh8a2B9F1ZYVv2eNkpZtkNKq31eb5s8aV89Ltjf4A+meksQt4Vez3Y9CY+RLgfTnPWiU235Lk1U1R3x73zCdOd/kGxZ3z8Q2qc65OvoHdOdcyPEkx11Y7ph+voyzHoL3atSKOQXnPJqOVgePwn2P1GOoZPRb17FyCepWeQkPIt2FfkDEUrSIcg4azQD04j6CtG7ZYPhNcaVCpK1X1WL3LHB+KnduGur7TeAR1r0f4bMR2auJ3n3zi7EHjvLOQzPGx2Xnmx8YA4A1IctuL9y27a7pJrkZj8HmT9VzS3Y++kftwCZrolze5r2psviXJq5syvvnkE6e7fINizrmkm6Qq5+rkG9idK1KGPJKu+aaf5Ri0V7tW9P2U9Ww+btsqJDkMlWcTmrh+jflx4Qk0l2kw8CfgB3Tt2UoSXGlQqStVzLEajpYkbqN1W/+X4Q4UtWd10ScZjSah3l7xs/ikOxF4LxoHXp1zb3c8b1/0R38/XbtyuxMX33zqpgxF8qmrb9Ba51rlG9SvjSviGPQMz9q1XQOtxOtLuZV40cKHZJCURnClOKmuFO2x6o024hqCGpx9aEfS5L4sdeBF1M0/DnWh2rb3T7KI9P0/ypCX7olIpiEoUt4MfK6CdIvQgVamzK84XRsuvhWtG1/K5lMn36DnONdB83yDerdxRRyD0K5B8z2LE82vcg2KbPgGVsGV4nSQ4krROVZnoDHT59A/yHgTjZUJge7jcrT64R9ofPpK8jc1PBRw8a1ZddNu76DdyhsR2rjm0a6OJbkLzWs6G/s/jOzCYrT/0iuRu4catXClqsnrgUAgEAgEAm1PVftYBQKBQCAQCLQ9IbAKBAKBQCAQqIj/A1NwhgJiE1p1AAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx \\operatorname{Ax}{\\left(t,x,y,z \\right)} - Jy \\operatorname{Ay}{\\left(t,x,y,z \\right)} - Jz \\operatorname{Az}{\\left(t,x,y,z \\right)} + ρ φ{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "-Jx⋅Ax(t, x, y, z) - Jy⋅Ay(t, x, y, z) - Jz⋅Az(t, x, y, z) + ρ⋅φ(t, x, y, z)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAXCAYAAADwWbCkAAALiElEQVR4nO2de7BVVR3HPxeupoGKo00liZdohFCny8VCS15J5uQ0lNkUjBSpY5ZYgr00pKupWIqSomVNE1RDRVoqVGLNYLzUDITkUZNlD0Ycwkx7GUL0x2/tzr77rLX2Wmvvc/Y5967PDLO5+7H2b//W9/zOb6/X6ejt7SUSiUQikUgkUmNQ1Qbk8E1gDzCkakPaiPHAQeDCqg1pM6LW/Ila8yfqLIyoNTeivvwxaisvQVqrLjy9AUblcSpwPnAj8E/N8XmIbTObaVQbsAm4F7gOGFqtKaXrZyiwS5V5b0llgl1rUWdmWkVr/UFnELVmo1W0VpRGaQtiHAvFqC1bgjQI6AYOAFsbZJiNG4AXgC8bjveo7abmmNNWLAReBXysQhsaoZ9eYDjyQe+xn+qFTWtRZ3aq1lp/0RlEreVRtdbKoJfGaAtiHCuCVlu2BOlE4AhgB/CvxtllvPc0YAXwb8M544F/AL9tllFtxC+AXwMfBgYHljEb+RBPCby+bP2MRcT7APAr4Hjg2BLKzdNa1JmdMrRWhP6iM4hay6MV4loRGqUtiHGsKFpt2RKk8Wr7y8z+BxGBnZvZ3wEsVcdu1JQ3Cbgf+CBwCrAOaQZ8nPqm8QtUed/TlPMFdY8xSHPYAfX3QaR50YfQZ7FxhbruCsPx0cB/kG4BXzZQe1bdv5+nzv0uMAL50FSBTj9FfLMEqZd5SHABGGcox8dPJq21us4gag3MccrH/jSuOvP1fYxpenzrqeq4lnAG8BDSYrMf+CMwH/t3qk8M863HGMf0FIpjnZaCTYHnk8BmpL/uPsThADcjyc/XgM9krvk88FlgN3C1um4o8AOkklYjTtitzp+myn1EY9cmYJm610bgp6ljpqBnIuRZ8livtqcZjt+OZKhzPMsF+CF9nzfhQ0jFrknt26C2b0P822x0+gn1zUxgKnAbsBN4Qu3vQe8PHz+ZtNbqOoOoNTDHKR/7E3x05uv7GNP0+NZT1XENxLdXIUnOV5AWzPcj33MdapvFN4b51mOMY3oKxbGQBGkr8C3EIbOQzPEqJCteAVySOX8WkllvQwQyARiprlmIiGs6kijdhIy+70ZEpBvIuAIYpu6/DPiq5Rny8H0WFzYjTZwTNMfeizj/NmpvED7crNl3E1LRS4FrU/sfU9tJAfcpA51+QnxzBPKMzyL996SOm/rwXf1k01qr6wyi1sAcp3zsB3+d+fg+xjQzvvVUdVybi7zsfxFJBg6q/XchvSHzgOuB/6auCYlhPvUY45iZQnHM1BzYgTT97TcYNR94EansOYggViNOSwujE0mC9gEzgL3AZHUsyRpXqW2X2g5HssWkNUlHIqrNlnNccX0WV15CHH08cFxq/xDgFmQK5oJwc/9PB3An8AngDqSJNW3v88hzjSjhXr6Y9BPim2vUuZ8DnlP7krcvU/N01haTn/K01so6g6i1vDiVPs9mP/jrzMf3Maa54VJPVca145DWoYeBK6klRwBbkDEswxA/pQmNYa71GOOYG95xzJQgjUay3m3qgiy7gMXACUjz10akX3Jf5ry3IpX3E1UW1NYc2KL+TgxMBpYdo7aJkHT0IE59wnKOK67P4kPSVJduMlwAvAb4NFIRRRiMZL8fQd5k5tD3w5rwV9wGAf6B+r7Zb6hjazTHluaUZ9OPj29OAi4DtiNN2QlPI29jrwOOtNiR56c8rbW6zqB/aM3279uWsvLilKv9oTpz9X2Mafm46gyqi2szqH1p65KBpPXmQGpfkRjmWo8xjuUTFMdMXWymZus0f0n9/0L0M0gmqu2PUvvGISPp/67+frXaJqPrk0TpMMN9O5FB3juQgVtl4PIsPiSVPQEZZzUGaZp9GGnmLMIhwHLgPCSLv8Zy7uGYZ8ykWYy8+aTpRro+lyGBJs2WnPJs+vHxzR1Ifc+lb9AB+bBPUXbqBu+5+MmmtXbQGbSf1n6HOZnR8bTlWF6ccrU/VGeuvo8xzY6PzqC6uDYdSYx+bDg+HEmS0potEsPArR5jHLMTHMdCE6QZSN/eM8jaAR9HMrMso9T2GbUdCRyNTHNMmKK2D6ntHrU9Bj1jESGU0VwI7s/iw0YkO02y4SVIBnsp5rciFw4D7gbOQZoJF1nOHYQEh6ccyl2s2TcbCQhLqdWNKzb9uPrmfGrdsQ9a7tVDfXBx9ZNNa+2gM2g/rZ1ZwKYsNp252l9EZ66+jzHNjI/OoLq41gm8CRkmoksI3oj4ehW11qUi2gL3eoxxzEyhOBaSIL0Dyei2I11oa4GLgC8hfbA6Xp4pN6msMaqMdcBv1L7dSIY62lBWt9o+bjjuQ8izuPAcMmDuVGT2wpnI4l1FbB6CLJMwFfgo5sXmEkYjfa5bCtwzFJt+XHxzJDKQ7iVkUKDuA9Klrs324fv4yaa1brVtZZ3BwNaaSWeu9hfRGbj7PsY0Pb46g+q0dhLwMuBQ5Is028WWTFFPBkEX1ZZPPcY4pqdwHNONQUoGPu6jvs/yDCQb2wWchVTK1UiipVv/YKvavk9t04PFulRZ+4HLU9ccRBx/LNI/myXJkl/QHIPaegyzDccTfJ/FtdyE9UhieBfy1jHfcm5e2UchbyCT1TkugSTJxNdYzyofm34S8nxzLfJ2civShHuR5l8ynTQ9C8TXTzat5ekM3DThqzPXctO4as2l3HbRmklnPvaH6iyNi++LxjRoDa1VHdOguriWJOPDgLMzxy5FvuMeAFaqfUW05VuPMY7VU0oc07UgJSvTbqLvwKs3IM2HzyPT7pIR83cjb3DTkTFH61LXfB3pR3w3shZBMrr/EkRkhyBNdtnmv3uA9wBvB57MHEuWSr8eOBnp890OfF/tT5K+/ZpnK/IsLuWm2QBcjKz3NBcZ/GUir+zlwJuR1T5fS22qaJqF9O1jPgvp877P0d6yMOknjc03pyAB58/UT/FNsw15vtdT6zcO8ZNJa3k6g/x6C9GZS7lZXLXmUm67aM2kM1f7TyRcZ2lcfV8kpkFraK3qmAbVxbUkQVqJ+HQ5kiRMBN6C+HimOqdIDAutxxjH+lJKHOvo7a27bhbyi8BLkNH3IFnpeqSJcTL1U2qnIQnQo9Qv9jQGGfU/idovDO8FfoZMmdyhMfxQ4E/I6qS6tRHmKNtOUDbdgKxNAdIkN0od043qD32WvHKzTESy+sfUM9j6UW1lD0KEOdRy/R7glam/j0L6iFcD73KwVcdsZMbHVPz66nX6yWLzzVp1/FxkkS8bOxF9nabK8vUT2LVm0xnY663IZ6ZRWssrtyqthaDTmY/9oTp7NHPM1fdFYhq0htaqjGlQbVx7BGmxPBppOfkA0mLzFNKFtoja5INQbT1LeD3GOFajtDimS5CWI60652AerR/CSOD3wHdw+0XhK5GK7MG9H3IYIrJFwKf8TSy13PsRHyZf3mWWncdlyMJak6jP6huNi35cfdMsBoLWQsp1oSqtNSpO+eKj5RCdQetorcqYBtVpbTAy63ontZakViTGsXC02sqOQRqHTIV7kvKXcU8GorlW3K1IRmxroswyERkUd4vHNY0odybwTqTfMy9olm3z4cgH5R6anxy56MfHN81iIGitEfZWpbVGxikffLUcojNoDa1VGdOg2rg2Vt2/rJlgjSLGsTCM2upEkqQFSJPVeUgf3AXUr9lQFN8E6UWkGX0q0jWnW6I/y0rMa40UwaXcEUglj0KaX7fjluGWbXMXMpNiaYll2nDRT6hvmsVA0Foj7O2ieVprVpzKo4iWQ3QG1WmtVWIaND+upUlajcqYCdZIYhwLowuDtjp6e3tPRvoV9yI/XncdtdlnZbIKaT57hbpXf+NiZPT935A+2cuxL3LXX3DRz0D1TaMYiP5sVpzKYyD5fiA9q43bkXE8p6P/seFIGC2vL90YpEgkEolEIpEBjW4dpEgkEolEIpEBTUyQIpFIJBKJRDL8Dz1EZqntvZxMAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Jx φ{\\left(t,x,y,z \\right)} + Jy \\operatorname{Az}{\\left(t,x,y,z \\right)} - Jz \\operatorname{Ay}{\\left(t,x,y,z \\right)} + ρ \\operatorname{Ax}{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "Jx⋅φ(t, x, y, z) + Jy⋅Az(t, x, y, z) - Jz⋅Ay(t, x, y, z) + ρ⋅Ax(t, x, y, z)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAAXCAYAAADJPgH/AAALDUlEQVR4nO2de7BVVR3HPzw0DDUabSpNuEQjZDbxsNASkCR1chrLakoGitIxCyzBXhrY1VAsREmx0qbpUg0VaaZQiTVD8TIzXvEwJ0srRhjCCO1hyKM/vmt5Nvusvc9ae+/LOfewPjN39r37sR6/9b2/89vrdXp1dnYSiUQikUgkEilP72YXoMl8B9gJ9G92QXoYo4CDwKXNLkiTifopRtRPOFFr4USd+RG1VYxMfXVHYLXCZHZWhWkeC2wz6f6kojTPACYBNwP/dlyfYfKbWFF+7cRa1A6zUds0i+7Qmi9RP8VpR/10h4+yRK0Vo1V0VpaordYkU19VB1a9geHAfmBjhel2AiejBh5ZUZo3Ac8CX8+4bvNZW1F+7cYc4FXAJ5uUf3dpzZeon3K0m346qd5HWaLWitNsnVVBJ1FbrYpTX1UHVqcCxwFbgf9UlOZpqNAPAr8HTgFOLJnmqcAEYDHw34x7RgH/Av5YMq925bfAH4CPAX0KPD8FOYpzCubfHVoLyTvqpxztpJ/u8FGWqLVylNUZlNdaGaK2WhunvqoOrEaZ4+9S5x9Cwrw4db4X0GWu3ZyR5gJz3wwkLIARGfeuNmll/fza3PdRk+YPHWl82dw7DHXv7U88Pykj3yzK1DuLq81zV2dcHwr8Dw1zhOJrP8sPgIHon/Nw49JaGduMBR4APgy8EViJusbXUz9UFPXjpqfrB8LrAGE+KrRNo9bchLRTM3WW5mzgV6iXaB/wF2Am2Z/FvtoqYuuoLTel/VjfApnmkeWsPgOsQ2OR96NGArgFfZB9E/i8I72JwHjgduAxYJM5PxL4heP++zLOfwRVfLn5e4Ipw28c964FFppyrUml53KqeRStdx6rzPHMjOt3oMh5WmC64G8/y2pzfAewrEB+ZXBprahtvgR8AdgOzEJtdSzwY+RElqF/1O3m/qgfNz1dPxBeh1AfFdqmUWtuQtqpmTpLMhu4FgVI30A9ph9E/qeXOSYJ0VYRW0dtuSntxw5XYLUR+C4y4mQUpV6LovDFwBWOtI4D5gLPoDFmqEXsWePMtzjOzUXG6AJuQCsfhiOhuibrLQYGmLIuBO7OyMuHIvVuxDrUbTvace39qHFvp2arEHzsl+RRcxxbIK+yuLRWxDaT0RvjZuTERgODUTvNQTq8CAVYc4n6yaOn6wfC6lDER4W0adRaNiHt1EydWaajl7evoCDioDl/F+oVnwHcCBww50O1FWrrqK1sSvuxKocCe6Euyn24KzMTeB6JZBoS0TJk6AOO+68HTgK+COw252zEntXNni7P14BPA3eibs8DaBJgH2q9Dy6scNd55NOI0Ho34gXUkKcg+1j6A7eiZbPXFS/ui2TZL8keVLeBFeQXQpbWQm3TFwVPe4FLgF3AOHPNvhEtNccOc4z68aMn6sd1X14divoo3zaNWvOjUTs1S2eWk1Bv1MPANdSCKoANaI7OAGQnS6i2Qm0dteVHIT+WDqyeIn9sMf3zvcSzQ1GUvdlkkmYbMB8YhLrp1qAx172Oe98AXAlsQV2mlqdRBP864HjHc5Y+KLL8OHpDmEZNzCeY4+76x15kJGq4TTn3+BJSb19s12OyG/Q64DXA51BDlyHPfmn+QePJlE9Rr51vm2vLHde6GqSXp7UQ27wdOZifm7SgtjfJBvO3/SeykzujfhrTk/XjW4cyPsq3TaPWGuOrNR+dQfVaA7202Q98VxBhe4zsEFlRbYXYOmqrMYX9WHoo8E9kOxoXTyd+z+paT/L3xO+Xkr0a505TtunUxGbZhFZnDMc9Me0oYBHwPhQdX5+6bj8g+2Xk3RdNXt6KJr9VgW+9fbGCGo3mAQ1DtnoYdduWoZH90hxD9ooSy3z0RpZkOBpiW4icWZINDdLL01qIbcaY408T50agFTDPmb9fbY52VUzUTz49XT/gV4cyPgr82jRqLZ8QrfnoDKrXGubZA8DPMq6fjIIr+3laVFshto7ayqeUH0sHVueWKEgjZ3UJGrvcgfZ9+BSKBNNMojYc81BOfiOpF1Y/4B7gQtR1N8/x3E5zPMFxDbS8tR/VdH+Cf71DWIMiZxupL0DR9VSyI2offOyXpDdyQk82uG++49wU5HC60CqZEPK0FmKbIea4wxwHAy9HS5st55ijLWPUTzbtoB+fOpTxUeDfplFr2YRozVdnUL3W+gJvQdMMXIHEm5Gtl6Lgq4y2QmwdtZVNaT9W5eT1PGf1ThRBbkHDLyuAy4CvovFly/FoktgLaLKbyzgdKABMjzP3R8vlxwOfIHvDs+0och6acX24Oa7PuB6Cb71D2Y0mHZ6BVo6ci+pbpsy+9ksyFI1BbyiRbxHytFbENi9NpWudyTDUbiuBx825qB837aAfnzqU8VEQ1qZRa25CtdYsnYGG9V4CHI0+gNNDgXa7gLspr60QW0dtuanEj1U1ed1OBt1L/Xjs2Sj62wachxpzFgrq0ntX3ICi2dtQV+Fljh+7LDO5MuJlKLofh94u8oxxEDXsiWisOo2N4J/NSaPLpDMl556Qeoeka1mFAoK70NvQzBLlDbFfEvumsNzz/irI05rF1zYbzfED5picrNmB2m8fcFXimaifetpBP751KOqjILxNo9bqKaK1ZujMYoP4AcAFqWtTke95EFhCOW1ZfG0dtVVPZX6sqh4ru4vxWg6djPYm1MW5By1/tCsQ7kFvixeheS4r0XjuVOBv1C9nTLIZjTu/ntq45iLgrWgX1NdSW56aZA61seJ7gfcC5wNPpO6zW/ffCJyOxr63AD9K3GMD0n0ZZQypd5JG6SZZDVyO9luajibPZdEo3VD7Wc5DbXG/R3mrIktrSXxt8y1z/T1o3xK7KucK5ASPQl3Y6e7wqJ9DaQf9+NThPor7qKJtGrV2KEW01gydWWxgtQTZdBEKLsYAb0M2nki5z78kIbaO2jqUyvxYr85O17PBTEbfkL0ArWYARcGrUDfoOOqXNU9AH2aPoIhvBTLyxciB5fEYGqY5Ey253EP+l2zuBF6Z+Pto4K9o11vXPhjTTD0GmfLfhPYgsaxH83MGUb+qIrTeSfLSTTMG2exRU4e8MeW8dHsTbj9QdL8DLZl9d4OyupiCVtuMJ2zegktraUJsMwyt1hlL7dvddwG/REuktzqeifqp0Q768a3D4xTzUc9QvE2j1moU0VpZnUFxrYE23xyB5m7OAj6EeomeRMN989CCsaKff4+kroXYOmqrRqV+rKrAahF6s7+Q7JUPrcY1SCgjCRuTHYAc5TzgsxWWJzTdB5C9bXBZVbq+XIk2YBtL/RtHd+KjNV/bJBkM/Bn4Pn7f5B71U45W1k+rEbVWnGbpDDSR+jkUCI1qcG9VhPq+qK1yOPVVxRyrEWhJ4hM09+sCQrkNRet53a4uxqDJhbdWXJ6QdCcC70JjwI3+ebqjvMegf8h7ObzOykdrIbZJpw3+ziXqpzitrJ9WJGqtGM3SmeU0U4aqVtY1oojvi9oqTqa+is6x6o024hqCHNV+tCNpes+NVuZ5NCwwHg0Bubb1d7GE7L0/ytAo3YFISENQd/IW/CLv7ihvB1rF0lVxui58tFbUNklCA6uon+J00Fr6aXWi1orRweHTmQvbS1XFyrosyvq+qK3idJChr6JDgaejMdNd6AsZZ1NbYRXpHi5HKx/+icamr+LQDVrbFR+tVWGbpahL+RUmr3Yj6if6qsPFkaq1NHegeUpn4f6i4yo40mzdI+pb1RyrSCQSiUQikSOeqvaxikQikUgkEjniiYFVJBKJRCKRSEX8H9abey8GPzmdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx \\operatorname{Az}{\\left(t,x,y,z \\right)} + Jy φ{\\left(t,x,y,z \\right)} + Jz \\operatorname{Ax}{\\left(t,x,y,z \\right)} + ρ \\operatorname{Ay}{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "-Jx⋅Az(t, x, y, z) + Jy⋅φ(t, x, y, z) + Jz⋅Ax(t, x, y, z) + ρ⋅Ay(t, x, y, z)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAXCAYAAADwWbCkAAALV0lEQVR4nO2de7AXVR3APxevpoF6G20qSbhkA0Q2XS4WWgKSZE1OY5lNyUjd1DELLMFeGtDVUCxESbHSpulSDRVphVCJNUPxsiJe8arJsgcjDlGk9jBE6I/vOfPbu7+zu+ec3fvb/d3f+czcWdjf7tk953zu2e/vPPa29fb2EggEAoFAIBCoMaTsGyiYrwMHgKFl30iTMQE4BlxV9o00GcE3P4JvwR0fgjfZBK/cSfQqK0Bap048r8CbGQbsU+n+oMB0zwGuAG4H/m34fI665vQCrzlY2ILUxQKkfsoi+NYaDGbfbAju+FEVb/JSRpsUnEom0au0AGkI0AU8D+wo8GZ6geFIZXUXmO5twNPAlxI+19faUuA1BxMLgZcCHynp+sG31mKw+mZDcMefsr0pgl4a3yYFp9IxepUWII0GTgb2AP8p6CbGqRt4GPgNcCZwegHpjgamASuA/yYcMwH4F/D7Aq43GPkV8Fvgg8BxJVw/+NZa5PWtB3nAXOB5/YHwzfa6wR1/iminesjnTh7KapOCU+kYvUoLkCao7a9j+x9B5Lo0tr8N6FOf3Z6Q5lJ13BxEDoDxsWNuUGnckJDGGOB/SPe45kqV7ncMx39OpTcW6T57Xv3/GNId6UKevCfhk19bNlLLq+nn57Hjvw2MQH7RGo3Jt7xlY+MbuNdr8M1Ms/sG7nkAmAw8BLwfeA2wHhni2Eb98F1wx4xLuZfpTZzzgZ8hPTdHgD8Dc0l+ttq2SeBWJkleVd0pqLBX7SkJJzUgHwe2IuN1K5ECB7gDaSC+AnzKkN50YCpwN7AX2Kn2dwM/iRy3QW3PTbive5AIb1Zk3zR1H78wHL8FWKbubVPsWqbGLg3fvKfhk19bvk///Go+gIiwNrZ/o9q+GVjjcb08mHzLUza2voF7vQbfzDS7b+Ceh88Cnwb2A/OQehoGfA95AK1BGvj96vjgjhmXci/TmygLgJuQQOfLSI/kexEn2tQ2ikubBG5lkuRV1Z2CCnvlEyDtAL6BFMgMJHK8CYmIVwDXGtI6GVgE/B0Zf4Va9Bwfg92KdBFONKTzbnXzd0fOH4rMJdiLecLjCqBD3e8y4H7DMbb45D0L1/y6cIdh3yJEjD7glthnm9V2sse18mLyzbdsXHwDt3oNviXT7L6BWx5mIL0Fu5AH30RgFFJHCxEPL0ECpUUEd9JwKfcyvdHMRgLjzyNBwTG1/z6k53AOcCtwVO13bZPAvkzSvKq6U1Bhr5K6AduQbr8jCTc1F3gWqehZiAhrkEI7ajj+ZuAM4DPAIbVPR8/x7sXn1I2eqc7RDAXuRJYwzo/sH45El/tJRgu4NeUYW1zznoVrfn1pA74IfAy4F+mSjd/vU0jeRhRwPReSfPMtGxffNLb1Gnyzoxl9Mx2XlId2JAg6DFwOHASmqM/0N+LVatuptsEdO7LcKcsbzRlI79CjwI3UgiOA7chclg6knDQ+bVKUtDLJ8qrKTkGFvUoKkMYgEe8udUKcfcASYCTS/bUJGZc8bDj21cB1wG6kG1LzBBJNvxI4JXaO7uqKdrnNB14OfFJlRHOa2h4imW6kEnamHGOLS95tccmvD8ch0fKHkG88s+j/Sx3lH2RPGvwT6eO68Z9vZqSX5ptr2fj4Bvb1GnzLphG+fU19ttbwWV9Gelntm00e3oQ8mH6s0oHa+1S2q//rxldPmg3uZGPrjo03ULw7IAGxfnibggLdi6OHoHzbJE1WmWR5VXWnoKJeJQ2xJXU/R/lb5N9XkbwS5F51ndnUhNHsRFYSdNF/ApYurInIWP5Ydf6jSDdhFN34nJhw/XZk4uQeZKJXEdjm3RaX/LpyPLAcuAyJ+m/OOP4kklfXaP5A8oPFxBMZn6f55lo2Pr5pbOo1+JbOQPi2BPlGHqULGb5ahjwEo2zPSC+rfbPJwyS1/WFk33hkldAz6v8vU1u9cii4k46LOzbeQPHuoM49Cvwo4fPhSJCk2708bZJNmaR51QxOQUW98g2QLkfG9p5E3h3wUSQyi3MFtW7nR1Juqpv+cmxCojsdTS5FIsCZ1Ed9B9T2NMyMQ8QponsR7PPugkt+XTgReAC4GOlWXJxx/BCkMXk847gLc9yTiTTfXMrG1zewr9fgWzID5dsSw74e5EHVh6wiciHNN9s8nKW2T6rtKOBFyPJtzQVqq+8vuJOMizu23kDx7rQDr0eGVE2BweuQsl6NBFF52iTbMknzqhmcgop65RMgvQ2J6HYj3czrgKuBLyBjr5pTkMlQzyETu0yZ7EQetvEx2EPIhLNzkJn/FyIvv9pmSGM/EtGOSchLl9qaznXFNu+uuOTXlqHI0uOpwIdJfildlDHIOO32HNf1Ic0327LJ45tLvQbfzAwG33zy8MJYmvpBNBaps/XA79S+4I4Z13IvyxuQ4bIXACcgD9T4EJteqn4/+doklzJJ86pLbavsFFTUK9McJD2B8TD1Y5bnI9HYPuAipFLmIYFW/P0HtyAR5l1IN9zVhh+9JNA0i38D0vjch0TrcxMydQypqNORsdw4Oqp+OuF8qL3DoSflGJe8u6Srsc2vTbqnIt9WpqhjbBp6qEXva1OPKpY03zQ2ZePrm2u9Bt/qGQy+ueZhh9q+R22jE2E7kbo7AlwfOSevO33Y1a+rO7bpasp2pwxvNDoQ7gDeGvtsJuLDw8Aq/Nsk1zJJ86pZ2iOw98om3UK8MvUg6TfMbqH/xKvXIt2GTyHL7vSM+QeQb2KXIOPy65Exz5nAX6lf2htlFzIm+yrqx5Q3Atcg7xSZjUyeSuJB4F3AW4DHYp/pV6vfCpyNjA3vBr4bOUYHikcS0nfJe5SsdKO45Dcr3eXAG5C3g76C2rLSKAupH5O+CKmPlRb3WxRJvkXJKhtf30bjV6/Bt/4MBt9c8/BVpNzeibxnRa9YuhZ5cB6PDEfEhzbyuGNTvz7uuHgD5btThjcaHSCtQsp0ORIsTALeiJTxdPI9A33KJMmrZmmPwN4rm3QL8aqtt7fuvBnIXwReisy8B4lKNyBdi1OoXxo7DWkkfolEYeuQArsUeVFTGnuR7uhz1fmaSSqdzcjErbRxyBOAvyBvMTW9S2GWystIlYfbkHdYaLYhcwpGUr8SwDXvUdLSjeOS37R0hyAiD0s5/wDwkti+U5Fx5TXAOzLutUhMvsXJKhtf31biV6/Btxpl+daDrEaaits8EpNvvnkYi6xkmkztr6cfBH6KLAPfY0gnjztZ9evrjos3UK47RbRTPfi5A/IixvHIfLN5wPuQnpvHkWG0xcgCFt82aTN+LqZ51QztEdh7lZVuYV6ZAqTlyDefi0mepd8IHlL3oKXJ4kak4rtxG7fsQJZaLgY+4XaLhaZrm1/XdG25DnkZ12TqvwkMJDa+ubrQCIJv+aiyb66MAv4IfAu7v5bu404H1fAGynWnLG9AJg0/gwQ0EzKOLYNW8MonXRuMXsXnII1HlsI9RrmvcJ8OvB0ZN7R9IN6FRNBp3ZkmJiGT6O50PK/IdF3yOxD3exLyy/UgjW10bHzzcaERBN/8qbJvvumC/UPJx50qeAPlulOWN5px6h6KWhFWNK3gVUPbo3YkSJqPdFldhozBXUn9+xoGmhFIIZ2FdFvuxi1CfBbpPp+KdHebXuVvYhXJ7yXJQ1a6vvkdiPvtRFZd9BWcrgkb3/K60AiCb/50Ui3f8uIaIPm4U5Y3UB13OmmcNyZ0r1ERK8IGglbwqqHtUVtvb+/ZyLjiQeSP1y2gtkKjkVyDzF7/JzKmeT3ZLxhsZlotvxob31q1bAaSVi3TRrRvq5GhgRer6ww2WtWdOPcg83nOw/zHhgNuVN4r0xykQCAQCAQCgZbG9B6kQCAQCAQCgZYmBEiBQCAQCAQCMf4PNVJlqWq5rd4AAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle Jx \\operatorname{Ay}{\\left(t,x,y,z \\right)} - Jy \\operatorname{Ax}{\\left(t,x,y,z \\right)} + Jz φ{\\left(t,x,y,z \\right)} + ρ \\operatorname{Az}{\\left(t,x,y,z \\right)}$" ], "text/plain": [ "Jx⋅Ay(t, x, y, z) - Jy⋅Ax(t, x, y, z) + Jz⋅φ(t, x, y, z) + ρ⋅Az(t, x, y, z)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ρ, Jx, Jy, Jz = sp.symbols(\"ρ Jx Jy Jz\")\n", "current_density = Q([ρ, Jx, Jy, Jz])\n", "current_potential = product(current_density, EM_potential)\n", "current_potential.display(\"current/potential coupling\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apply the Euler-Lagrange equations to the first termes of the EM invariant and the current/potential coupling." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from sympy.calculus.euler import euler_equations" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAApCAYAAADTV+jiAAAO+ElEQVR4nO2debAU1RWHv6cYtyBEDHEJCpoA4gIKEReURWNQYzQuUVTkVcgmIItLxP3hUhhBfagkUbKglqaiJMaNGKwoKoiJog/3NaJSgAoxhnKHvPzx67b79fTMdM/0TM9Mn69qqt/r5c6d3719+tx7z73d1NLSgmEYhmEYRqOyUdoZqAF6AAuBF4BlwDGp5qZ+MN3iYXolg+mYLqZ/upj+JdJkPTtsB3RHFac7sBToA3yUZqbqANMtHqZXMpiO6WL6p4vpXyJZ7dmZALzo/L0KVRyAd4H3gW3SyFQdYLrFw/RKBtMxfdwyMP2rj9X/BMiqs9MfaAvZPwjYBHi7qrmpH0y3eJheyWA6pk9YGZj+1cHqfwKYs+PRDbgZGAu0VztDdYLpFg/TKxlMx/QJloHpXz2s/idAFpydPsCDwCfAs8A+wO50rDybAncC04HHqpy/WsV0i4fplQymY/oUKwPTv3JY/a8Qje7s9Ab+iSrN7sBU4A5gc7zK0wTMRRXslqrnsDYx3eJheiWD6Zg+xcrA9K8cVv8rSK07O92AHyEv9jXgY+ADYBHqviuW/9nAfGCSc/19wN+B1cA7zjkHACcAR6MK1QbskdgvqD7lagamW1zdTK/S6lmQNHX8MrACDQn8JYH0qkEaZVDJepz1MrD6H5+vA78DVgKfAsuBVuArwRM7VTNXJXA88CsUgf4Q8BbwNbS2wG+Aw5xzwsYsewCHoG5AP+vp2CW4iNp3+uJQjmZgusXVzfQqrZ4FSVvHFmAHlN+9K5B+JUijDCpZj1vIbhlY/Y/PLmgYrztwF/AS0m8SMBI5hmvdk6thfJuRgMNKuPYV4HvIezsZOBf4IdAXRaAfS/5FlfYCNuBN03MZSHhkey3RTDqagekWVzfTq7R6FiRNHfsBE4H7gWfQg6da03mbsTIAK4Osal8Ov0SOzkTU0zUVGAFcg2KfLvefXMjZGYJWavwv8i7fBC4ock3SPAjcA/wvsH818Gvn72F5rm0HNkbBXC5DkdfallgOxUHA3cAY1KX4KPAh8DSwX8LfVYxyNAPTLa5upldHotazINXUMcj1KBbiDGTsQQ+fIAtQPoMPLzeOoh24ojJZDCVrZXAmyuOZedLog4YyHqlEBvOQVBnUuvYui1Fe830ermhOPXYGDkXDVrMDxy5GdnE0sKW7M5/jchmqMF1Rgc0BtgIuBc5PMMPl8LmzXZ/n+FJU8Wei7q4j0FQ9SLbyXIqcQtcDvwvddH8GBgB/Q6te1gLFNAPTLYxCupleuUSpZ0GqpWOQk4DhqJX4IgoOhfCu/LPRQ+0y9GBymYkc0DmodVkLNGIZLHK2++ZJ5zpULhOSzmCJxCmDWtfe5U5gWsjnLef4QxXLaUdGONsF5Dqa65BTtgW+uhIWszMFOTRXohvXHWu8AbUgz0DdQ8EvqCadgFOdv+/Pc85KFCA2HfgB6h68CbUKXk0oH6NRb9dzqMIMBnoB5znf2xk4CjgFmJHQd5ZKFM3AdAtSTDfTqyNR61mQaugYpDPSay2KWQCvZRtm7JehGTBjUJnMRWVwBnA78LMK5TMujVoGT6EA4MEh6RwPfBu41nd9msQtg1rX3mVmyL4ZwI7ofrikwPdNRh0oUWkjf7B0H2f7Sp7jr6Ken94oyDvH2dketSCXoLFHf1BVGwoA6ovG9N6MkemkuQJNzZuPWrT5uNX5+LkooTx0QhXzM2AUsAZ1O4LXArkXPYR6JvSd5RBVMzDd/ETRzfTyiFPPglRSxzCmIZs3AS27D17LNl83/gVoNkwLmsFyOfqdo0m3AeinUcvgc+AJNJy7PXIQQEMVV6PXJ1Qyr3EopQxqWfswmtAQ0mnO9nQKB2JPBnaKkb+byO/sdHG2H+Q57u7v6u4IDmONwqs4YTfuh852Q54vWE7uGN7vnWMPhRybmyedQkxE3u5LyMCkxQgUvf5X1OIGDTG043U7uhp+XCCd5WRHMzDd4mJ6VYbdkHF+Hi+2AvQAXQt8Aw3dB1mBprbuhIZNHkMxPJ9F+M7lWBn4KaUMFjtb/1DWRShA+BzyP/xclmNlAKXXf5eNkTanoVGgCRSfcdYTOUhRP82Rf00uTc72izwFe3aOQoZzfp4EdkAOz8o8x1vJ7aYa4KR7E6poftryZjWc8cAs9Hr7g4F/x7w+SQ50tvf59u2Fus/WOf+7MRSFuiFbyY5mYLrFxfSqDLOR/ZtCbuPtWRRUOoDwYNf3fH+PJfobp1uxMvBTShm4zs5gFK/W17l+CdKwGK1YGUB59X8T4DbgONTDOa1CeSyE69R2yXN8q8B5HZydTmiO+hrCb95vAduiLvN83bWtIfuaUUWaiwIsS2UymlL2HKpE75aRVhLs4mxXO9teaCEj//jsMGe7sEA6rSH7mmlMzcB0i4vplTyn4A0FLihw3t7kGvtRKG5hNbKHk1DrNgqtIfuasTKIUwaPoda627NzPeplGE+09YRaQ/Y1k60yKKf+bwbMQwHUZwFXxfjeySQXs/Oys+2d5/g3ne0XMT1+Z2c3NO3tS2h4K+jQuNP9boyWz0Q5B42BtqEgtDUh50Sp6EnR5Pt7C2c70Nk+5Wz7oiGIR/EKpppE0Qyqp1tT4P961i0NzepZL6iNlxU2oRbfDBT/cQvh+eqJHlbBuIXDUev/eaT5I2j13FloyCItslQG76NZQ4PQTKKD0aJ+T1cmu5GpJbtRiC6Urv2WaOmL4cA4pHscJpNczI476+tQcv2VzmhBwY+Bx92dfmfHNaJd0eqD/qGs8Sgo7360pkA1uRBFeC9FPyxft2DwYVoqPVAl6I4qxDTUXRpkGWrlnQD8ES96/SlUWeahKYeTE8pXHKJqBqabn2rWtSzpBcnVs3K5BPXIXIkeUGEMQoGw/hkpQ5DWK9BvfQ/9/jvQQ+7oymS3KFkqA5dFaCG8G5BTcUEF8hiHaj+jyqGV0rTvgnyCwagn7Obcy4rSs4Rr8vE66pU6FPkn1/mOTUOO2Q14ccahzs496Ka+Dd3QByIv6UnkSVeTMagSbUAt14kh5yyntCCyfKxHXdPL0INoKXLygkN7v0Xjnd8HHkAPL9D005FoXHMUXgu8WqShGZhucTG9PCYgg7VrGfmJksYezjlvU3iK7HPod+2KXsLYGw3ff4Ba7auc8+Yhu3gUspOPlp79kshSGfiD7xcDP0Gz4aaQblxMUmVQDf3L0f42YH/0otKd8aaq+5mO1gqqFuPQsOa1qCfqReSMDUfDVx3WBAw6O58BJyJP9VS0ZPQbyHO+Cr12vpr0crYbk7/l+jDJVqRVeMbsXdRtug3eokkua1CsxNVoKqS7UuNwFEx6KQpSqzZJaQamW5Ak65rp5dGf8hdOC6YxE5XBEb59blDmJHwtvhA+QcHefYE90QKO7cB3UIvSz7nICZ1B/sXuKkWWyuAfvmNvONsnUGMgTZIqg2roX6r27nR/UFxv8P1dIBvWUlq2S+Z11At1CWr4HY5s6rWod6eDE9zU0tICKqh1yDMaSOMxB7UCRsW8bhAaauhH4fHWXsC/gD9Q/d6vSmK6xacUzbKsF6i1+CfgFwmm8TAKNr24rJxlh3oqg7vRA3xf9CBuBOpJ/7rEXWenH+quqnZXeLUoxWvuhsYlx1I8sMwN5Eo7SC5pTLf4xNUsa3r1Qe8T+gRNcd0HLb7W5hw/HnWF+wMZZ6GW5lcjpLEJ6qE+CK2/0o63UJohCum3Aq0I7WcAKpN+EdOoZBmcBByJgmPr1dEpdg+4by4Ifi6OmIbdAyG4zo7bm1PPRtQlCWO6KXoHyHQ0JliMLDyEohjBrOlWrtHKml69UevzWaTTVBTguzmeZvOc427Q6VloaH0kiiEslsYGFEwMGr/fDq8L3iiu3xK0zIifa1CP5QsR00i6DHZ0vmMOWgDweeDnZaSXJlHugdlIM/czCy11cGvENOweCMGN2QlOZ61X3EowFwWw9SHcmJ6DjOmP8Yzp/siYNjnXP4iGFqLgPoTaCp1Uw0TRrZgRzJpuUTSbTcex+qloVtWtZE8vkB7zUcwAwGvovTWHAe84+9rR+6buQ2Py56Fp3q/HSGN7NCz/BLUx3beWKKbfEhT46XIs6q08LkYakGwZjEQNgv+g+KnJRF/IsdaIot06vAVDz0PvyhrmnBs1DbsHArjOzunOp95JwpgegB5Iz+BNJx1N4W7A7yaS+/SIolsxI5g13co1WkPIll49gEPIDW5cT67ztgAZ6cvQb34yZhp7oVluZuQ7EkW/x9FklK1REOuVKAB0bYw0INkyuJF01ndLmjj3AGg20ThkM9zF8eweKJGwt57XK0kYU9AaDsF3hjUyUXUrZgSzpFsSRitLeoGM7wZkgP0MJHcV1xHIkd6IjqvQRk1jAPU71FdJoui3FMV7DELrrHyOHPs4aYCVQRhx7oELUY/xULwenThpDMD070AjGdtClaAtsC+fMc0iUXXzG8Ep5BrBLBGnrl2I1sQZim/p8gzSjmZ9burbNxQ9UNt8+/qjxRXHoVk3l5eQxh6ox8zoSBT9PkUPySNRb+RZ6F6PkwZYGYQRVbuLUIjFMDo6OnHSMP0DNJKzk4QxzSJRdStmBLNEEkYrayxFdWgmet/XEXirsLY5253Q0OAMtFT8RWhtmwNjpAGya3uiuIWuCf+OeiaqfkvQWlFL0GKKpaRhZZBLFO3ORwsTnoh60Ld1PpvFSANM/xwaydlJwphmkag3DxQ2glkiCaOVNVai6fWHoWHjs9E9+BGaCbk1WkH6XrwGyDNoQsH0iGm4nA8cg2YQZr0x4yeqfm3oXUPB2Zdx0rAyyKWYdk1ollk3tEr0Kt9nv4hpuJj+AdxFBRuFk5Fh7IyGGB5BLzDtjLzbxc6+n/quuR15v0PILoV0879gbQxasbQ/mv6ZZQpp1o5mjmwVct0IvJfYGUYt8gAach2fdkYMIykazdkxKosZQcNoTDZC64yNRTNz+6FXmBhGQ9BIs7GMyuA3gruj6dOGYTQWB6E1n15Gy0qYo2M0FObsGMUwI2gYjc9CGiuG0zA6YM6OUYyFmBE0DMMw6hh7iBmGYRiG0dCYs2MYhmEYRkNjzo5hGIZhGA2NOTuGYRiGYTQ05uwYhmEYhtHQ/B9IsDVANryMHAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ + 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay + 2 \\frac{d^{2}}{d zd t} Az = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) + 2⋅───(φ) + 2⋅───(φ) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) =\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz \n", "\n", " \n", " \n", " 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAApCAYAAACIn3XTAAAPUElEQVR4nO2de7QVVR3HPxd1+QoxMVQMhTSumgYo+UhFUDMVrZaPzAd6l1TLN9fUJB948bFQIb2oZGYWStqq6KGpmaYgoqiEXhR8oBTLWIIKkcsUH+Dtj+9MZ+65c86Z55k5c3+ftc6ac+ec2Wff72/P7N/s/du/aWpra8MwDMMwDMPIL72yrkBBGQDMBl4CFgLHZFqb4mH6po9pnB2mfX4wW2SP2cChyUbYUmE7oB9qXP2ABUAz8EGWlSoQpm/6mMbZYdrnB7NF9pgNHGyELTnOAV523q9AjQvgbWANsHUWlSoQpm/6mMbZYdrnB7NF9pgNfDCHLTmGAB0++4cDGwH/qmttiofpmz6mcXaY9vnBbJE9ZgMfzGFLDr8G1he4CxgLdNa7QgXD9E0f0zg7TPv8YLbIHrOBD+awRaMZeAz4EHgR2BvYna4NbGPgj8Ak4Kk616/RMX3TxzTODtM+P5gtssdsEBBz2MIzGHgWNazdgfHA74BNKTWwJmA6aoQz6l7Dxsb0TR/TODtM+/xgtsges0EI0nDY5qDhyv1SKDsp+gLfRR7768Ba4F1gLhpurabLNOBBYJxz7APAo8BK4C3nO/sDJwDfQo2uA9gjQj0/AyxHev4pwvFZEEdbqK++YBqbxv7E1bgS9dbeD7OHMFuEo6g2yAOfB34BvAl8BCwD2oHPer+0YcI/2gsYCqyntKojjxwP3IpWn8wC3gC2Qfldfg4c4XynfJ58AHAoGrL1so6uw7dzScYZbgO2d+qxZwLl1YOo2kL99QXT2MU07kocjSuRhfZ+tGH2MFuEp6g2yJqd0DRvP+Be4BWkyTjgcOSwrobkRRgM9EYJ7tLOkdKCGsbICMcuAb6BvNqTgR8BpwO7oNUnx+KfnG8Y/s7oXvivaInDbsB5wEPAC6hxN8JS5qjaQn31BdPYS1E1biHadSKOxpWot/Z+ZGmPFup/za5ET7ZFC/k4J/JggzzwE+SsnYdGEccDBwM3ovi+a9wvJu2w7eVs/162/2HUQMqN6c5NdwLXJlyXajwG/Bn4tGz/SuCnzvuRPsd1AhugAEiXg9CdUUeiNYRbkD4/QCczqIGXUxRtob76QnCNIV86m8bpE0fjStRbez+C2OMCVNcLKpTRjKZt5qRRwQokbY9GsQXAk6i+lV6Pp15TURQbjADuA05DU6tPAO8Dz1P/UK4vAIehKdBpZZ9dgeo1Btgc6uewXYSMfDUykMsUJNrtyKvMA58423U+ny1AF6opaBhzNFpmDMk2sJOAUcjzfhkFZIL/kHlRtIX66QvhNIbG0dk0Tp9aGleintr7EdQec53tvhXKuRnZ55ykKxiRKPZoFFuAYsYm+rzecD6flWpNg9EoNrgKPebKHcW7F92A/AGFc/0VPVmhXhzsbB+muyP8HnLWN8M5F5OOYavksC1EqztOQ97idOASdGfxW+CMhOsRlQ2BU533D/l8/iYKrpwEfBv9X3eiO9HXEqpDb2AymrNuc/a5d19+J3NRtIX66AvhNYbG0Nk0Tp8gGleiXtr7EcYez6GA8n18yjke+Bpwk+f4LIlqj0axBcihKWcysAM6R65MtnqhaRQbjAEuAxYhZ3kfYBC6xkxCdvkmcArS149WYMsQv9lB9cUkzc52SYXPX0MjcIOBR5N02JrQcO46/E/ky9BKjza0MuYa5M2OobtnmRXXoqXFD6K6+XG38/IyIcE6TAT6o7vXNc4+9+6r0lRSUbSF9PWFaBpD/nU2jdMnqMaVqIf2foSxxyfAfDR11B91rKBpmRvQ44HqUecgxLFHI9iinCY0dXamsz2X7JPINoINNkRO2cfAicAqNP0KpRHl+5HDNrBKOa3AjiF+906qO2x9nO27FT53928J3adEl1F9rrz89SvPsc3IQ12EEuCVsxwtU90RDak/hWJVPq7yz1Sr1y+dz2b5fDY9QJnlnIc8+1dQ55AFX0In4GJKMQGgC+ZqYGdgC5/jktY2qM2DkgdtXaJqDPnW2TRO/zqRJ43DEMUeTzpb77ToBBRwfjGVOxiXZfSMa3ZY4pwbGyCdzgSuRw5fLWdtGXZOgKYetwf+gnwU0IxgJ6XpV/eGcG2VcgYipznoqyVmvZucbSd0nxJdir+zVYk3Pe8rTYd6ecfzfizBV5K2030Ycijyhu9EjdJLR8ByXc4GpqLVrYcA/w55fFJMQzY5H62e8fIiCugcin+wb1Rt49g8CHnR1iWOxpBPnU1j0U5614m8aRyGKPZwHbZ9UHzPLs7x85CWtWinZ1yzwxL13NgIuAc4Do0+Twz4e+3YOQFwoLN9wLNvGJpyfM/5241dS3tK3It749OnwudbeL9X7rAdEuOHazlsJ6K5+JXAtijHyJkBy2732deCGt10FEQYlVa0fHYR+v/fjlFWHE6hNET7cJXv7Un3kzmOtnFsXotW8qGtSxyNIZ86t2Iau7T77Gsh/nWilXxpHIao9ngK3dW7I2y3oBGeswk2Bdfus6+FYl2zwxLVFpsAM1FQ/oXAj0P8ZrvPvhZ63jmxk7Nd6WwHoaS03pi7kc52dpVyWkk2hu1VZzu4wudfdLZLINlFB9UctiORN78YDU3OQRmTp6Kh1Ky4GM2/d6BA2lU+30k7PqAJedGTUezIjAq/ORCdGOUxDqZtMPoQXWPIp85BNIb66Wwa54e415U1aPXicLSi8RCUNPX5dKobmEa0RxxbbI5SUIwCzkI2yJpGs0GT5/1mztb1V55ztruga84TlJwoP1pJNoZtlrM9DIWoeeN0e6OkuWuBpyE5h81dcPAxpeBJlwPQ3cFyp1LvAJej54VdixLFZcHlaHXNAqdelYZzmyrsD8oAdIL2QyfrRDTF4OVKNJpwPToZ/BiOAoG9q4h6urYuQTRuJ5rGkE+dg2oMyehsGqevcdJEva64zEXJXW9DnfJlKdQxDI1sjyi26IMC+fdBo2J3+R9WVxrVBgvR6P0JwG8oafwccpRnogWTrTXKGZhwvZai0dbD0Oj1zZ7PJiKH/TaUj42mtra2JH60Gd0BL0CNzmUISuq3Fl2Ql3o+m+98dwTyasPSgoInRxF+WPc0NBy8HgnkF0C7jGiBsOVshzq5hc52AdLLjcvZAzWaFcCuOIbxYRPgv8773mgINS1t41BPbV3S0ngt6bbhqJjGwWkh2nUiSY3PQRfjXUP8ftwy4tjD5VRK8WrfQ48fikML+bhmx7VHvWwxE406P4uC5f2YhHKZhaGFnndObI2mb7cB/oZuQJvRDeHhKEbwZLrfhNaDnej6aKqXkZM+Ck2FfhXn0VRJjbC5zwKb59m3M1ri2wl8na4XYdBjLR5Bw8SVEjSmxSBnuwGVPerHqd3wgjSYFc4LNM+/BjUeN+mhG4Q6jsonMihg/TU0dPtlZNierq1LWhqvJp9tOCmNIbjOpnF3gmo8hPiJQMOWEdUez3g++6eznQ/cEeK30yBP9qiXLUY4+/em+/M2QedhW4h6xCVPNvArYwq6jo32+e4qFKN2A9J1c2f/KLQQ4Sq0eCILlqKb0iuR83gkutbehEbZ/j+KmdQI2z1ouHE0GsLtKdyOckWd6PxdrcGAjDIDTTPkZX4/r5RrGxTTOBxRdDaNw/Es8HvguozLCMt96Fq2L3LaikJcLbOwRdFI45x4HI0YXlHjuEHAP4Bfo/jMhiGJR1MNQ0uNXydaIslGptzD/wqVV8n2RTEIY7FOLghR7sBM4/CE1dk0rk4zeubihyied2+UVLTD+Xw5enKDl6FoWmu3gGUc73zfG/w8FY3OfC6h/+Mk4GgU5N7Izlo1LcfjnwPxioDHQ31s0egkoWG1MjZC8fMjUK7ATrrH0ntxF3VkvYAmNFEdtl5oKHYGmntdD5xO97wyRSJOg9kYPQ9uEtLL6EoSnZxpXJtaOtfqwEzj6gxGd/0vIl3HoxiZTSlpPA/d2Hm5EY10vhSwjJnO5+4igAuB76DpFG8Ou7Ds4Pze7SjGaTHwwxjlZU0tLaeh2Ez3NRWlfbg74PGQni2KQhIa1ipjPYp9BcV+bUdpOtmPhnXYosaw7YYck1XocQ5Xo2DkouI2mOnA9ykFK5Y3mGdQg3mDUiBok3PcY8jBNbpSS1uo3cmZxrUJovM0usafjEerqu7GNA7CNBQSMs75+3XgUeAI4C1n3zyUnsHlWDTKeVyIMjrR8w8fQPEvl6CUBOXxf2E5HDnj/0Exsq0ET1qcR4Jo6SZNvQQ9z3Kk872gx6dli6KQhIZByuiPbDmf2iP/rsPWEeH/yZSoDtsikplObRTiNJj9Uaf3AqXUBGOoPmTbk0iikzONaxO086rUgR2AaVyNAcChdA8OX0fXjuFplPh0KxSAfj0KNl4dogxQKoD56Gb5KKo/YSYoP3NeRSCMlpei68tISg/hztoWRSAJDYOWMQwNGgUJ0zgqwHdySZKJc4tK3AYzl57l3IYhiU4OTONahLlwgn8HZhpXZxgaaS+fadiLrlntF6DwieEoF9QnyJkOUwZoBGIIsknes8xnQVAtL0cjzgdRGlkLczyYLSqRhIZByxhKA05xhsUuwLWp1mA6PH8PpQc0mIQJqq23kzufrp2cUZugOoM6sDNQB7YEIyidKN3Bxp59ByGnrMOz7yN0nTgajWJeiNpzmDKGoHxRZ6GVnNck8y8UiiBaTkD55UbS1VkLejyYLaqRhIZBy9gDjf4XGnPYamMNJj2S6OSM2gTVuVoHZlRnAWqnU1AizNGUMtN3lH13Hsp9Nw/FAIcpY0c0tT0ZJbWdgPLXHYjhpZaWlwLnoeD299FTCLZFyWuDHA9mi1okoWHQ86oXyl3Xn3DP+mwozGGrjTWY9EiikzNqE0TnWh2YUZ03UaqTI1D8zUWoA/oApSfw0oGeGVi+8rlWGVuhh1XfT2kU4gW0ym5Skv9MAaim5eto9Wtf4ElKSaFXAPsFON5sEYwkNAx6Xl0KHIMyChR2lDOpxLlF52TUgHqjaaU5wAXO3596vnMdcthuRc6FUZsg2oIei3IHGj5fXOc6FoFqOneilYFb+Bx3MKUHFBvJ8AiabrZrhGEYgTGHzWgUrJMzGpleKAnoWOBclBppTaY1MgyjobBVokae8XZyu6M0E4bRiIxAOexeRWlpzFkzDCMU5rAZecY6OaMozMZihg3DiIE5bEaemY11coZhGIZhnaFhGIZhGEbeMYfNMAzDMAwj55jDZhiGYRiGkXPMYTMMwzAMw8g55rAZhmEYhmHknP8By/mw8xg6BEIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAAnCAYAAACylRSjAAAPX0lEQVR4nO2debAcVRWHv8dSrCFokNWwiCaAQBLAsAghAUTCohSLyP4KRNnzEJDI+sJSARLhBYiIKAYQLCGKICCLkBACEWLghX2LppBKwiZSyE54/vHrdnrm9fT03j0z56ua6nm9zX2/c7vv6XPPvd3R3d2NYRiGYRiGUV6WKboALcpgYCbwHDAf2K/Q0rQepm/2mMbFYdqXB7NF8ZgNHDoswpYJ6wBrosq1JjAPGAp8UGShWgjTN3tM4+Iw7cuD2aJ4zAYOFmFLjxOB553vi1HlAngDeAdYo4hCtRCmb/aYxsVh2pcHs0XxmA18MIctPYYBvT7rtwGWB/6Va2laD9M3e0zj4jDty4PZonjMBj6Yw5YefhVsEHADcDTQl3eBWgzTN3tM4+Iw7cuD2aJ4zAY+mMMWj6HAg8BHwNPASGBzqivYCsBtwETg0ZzL1+yYvtljGheHaV8ezBbFYzYIiTls0RkCPI4q1ubAeOBWYCUqFawDmIYq4Y25l7C5MX2zxzQuDtO+PJgtisdsEIEsHLZZKFy5fQbnTotBwA+Qx/4K8CHwLjAbhVuDdJkK3A2Mc469C3gAWAK87uzzTeAgYF9U6XqBLWKUc1XgNaTnn2IcXwRJtIV89QXT2DT2J6nG9chbez/MHsJsEY1WtUEZ+DJwHbAI+BhYCPQAX/DutFzKP7oMMBxYSmVURxk5ELgajT6ZAbwKrIXmd/kVMNbZp7affDCwGwrZevmM6vDtbNJxhruB9ZxybJXC+fIgrraQv75gGruYxtUk0bgeRWjvRzdmD7NFdFrVBkWzMermXRO4HXgBaTIO2AM5rG9D+iIMAQagCe6yniOlE1WM0TGOfQn4DvJqDwV+ChwFbIJGn+yP/+R8I/B3RrfGf0RLEjYDTgbuAZ5ClbsZhjLH1Rby1RdMYy+tqnEn8e4TSTSuR97a+1GkPTrJ/55dj3a2RSfluCbKYIMy8HPkrJ2MoojjgV2Ay1F+30Xujmk7bFs7y7971p2KKsepdY4ZikKAs1IuSxAPAn8GPq9ZvwT4hfN9tM9xfcCyKAHSZWf0ZNSbagnhKtR3/2N0MYMquJdW0hby1RfCaQzl09k0zp4kGtcjb+39CGuP+1B5axtgN5+oD7g4myL6krY9mskWj6Dy1vs8lHlJRavYYBRwB3Ak6lp9GHgfeJL8U7m+AuyOukCn1mw7D5XrcGAVyMdhm+0st6tzzJXIaCemXJa4fOosP/PZNg81GpNRGHMvNMwY0q1ghwBjkOf9PErIhP4h81bSFvLTF8JrDM2ls2mcPY00rkee2vsRxR6no4b5QqS7y2TU0F2LIgFlII49mskWtwETfD6vOttnZFrScDSLDS5Ar7lyo3i3o4fBP6J0rnvRmxXyYhdneR/9HeH3kLO+Ms59Me0cNj+H7QmUnLitz/4HAt8CrqDyhFEkywFHON/v8dm+CCVXTgS+h0K516OowMsplWEAMAn1WXc761xtai/mVtIW8tEXomkMzaOzaZw9YTSuR17a+xHVHvPRiLwj0RP+NOBMFA26BTg2u6JGIq49mskWk33WTQLWR3Y5P93iRaZZbHA4cDbwDHKWtwU2QvV6IrLLd4HDkL5+dAGrR/jNXoIHkwx1li/V2f4yisANAR5I02HrQOHcz6i+qX4KzEVhyHWRkUAhvsvQqybOTbEcSbgYDS2+G3naftzkfLykWf4JSKcT0Ss4oPL0VRsubzVtIXt9IZrG0Dw6m8bZE1bjeuShvR9R7QFq3A5CTsWqKJfmXtTw1UYDiiKJPZrJFi4dqOvsOGd5EsVPItsMNlgOOWWfAAcDb6HuV6hE9+9EDtuGAefpAjaI8LvXE+ywDXSW79bZ7q5fHfp3iS4kuK+89vNbz7FDkYf6DJoAz8sjztLb3XEuSl48I6CwQeX6jbNths+2aQ3O58fJyLN/Ad2QiuDr6AJ8lkpOAKjxehv4KrBazTFZaBvW5mEpg7YucTSG8utsGmd/nyiTxlGIa4/X0NQCG6Au6UdRTtsnIX5zIe1xz45KXFuAuqanIWftUuTwNXLWFmLXBKjrcT3gL8hHAfUI9lHpfnUfQj4MOM+GyGkO++lMWO4OZ9kH/btEF9Df2Qpikee7X3eoi3sj3hb1FW8CnALMQR5oI3roH4Ycjrzh61Gl9NIb4pxeTgCmoNGtuwL/jnh8WkxFNjkFjZ7x8jRK6BxOdeJ1Um2T2DwMZdHWJY7GUG6dTWPRQ3b3ibJpHIW49gB40/P9aMKP/u+hPe7ZUYlri+WBm4EDUMRzQsjf68GuCYCdnOVdnnUjUJfje87fbu5a1l3iXtyH0IF1tq/m3a/WYds1wQ8HOWyPIg/RfXK+Cj0tnEC4cG6Pz7pOVOmmoSTCuHSh4bPPoP//jQTnSsJhVEK09wXstxXVF3NSbZPYvBFdlENbl7gaQ3l17sI0dunxWddJ8vtEF+XSOApJ7HEwyp9aAqyN5oU6LuTv9vis66S17tlRiWuLFYHpKCn/NOBnEX6zx2ddJ+13TWzsLJc4y43QpLTenLvRznJmwHm6SDeH7UVnOaTO9q85y5cg3UEHQQ7bO2gkzDZodMyuaAK+J1P8/Ticgfrfe1FS81s++2SdH9CBvOhJKI/nxjq/uSHSrTbHwbQNx0Diawzl1DmMxpCfzqZxeUh6X9kTRWCeRd1Js9As91NQ91dRNKM9kthiFTQFxRjgeHQ9FE2z2aDD831lZ+n6K084y01QPX+YihPlRxfp5rDNcJa7oxQ1b27oADRp7ofA3yA9h80dcPAJleTJWmajiQKvQQY+O6Xfjss5aHTNPCRWvXBuR531YRmMLtA10cU6AXX3eDkfPcFeii4GP7ZBSdn1pkRoR21dwmjcQzKNoVw6h9UY0tHZNM5e47SJe1/ZEUV0XkP/95tIi1tRQ71vNsVtSDPbI44tBqJE/m1RVOwG/8NypVltMB9FjA8Cfk9F4yeQozwdDZjsanCeDVMu1wIUbd0d9SRc6dk2ATns16D52Ojo7u5O40eHoqeueajS+XEElTyUY9CrLJLQiZInxxA9rHskCgcvRQL5JTMvJF4ibC3roEZuvrOch/Ryc0G2QJVmMbApjmF8WBH4r/N9ANWJkWlrm4Q8tXXJQ2Moj86mcXg6iXefSFPjE9HNeNMIv5/0HHHtMQRNxPohctwWePadi+7vo1AkIiqdlOOendQeedliOop0Po6S5f2YiOYyi0In7XdNrIG6b9cC/ooeQIeih5A9UI7gofR/CM2Djal+NdXzyEkfg7pCd8B5NVVaETb3XWBzAvb5p7OcC/w6pd+Ny0bOclnqe9QP0bjihakwi50PqJ//HVR53EkP3STUcdS/kEEJ6y+j0O2WwGOebe2qrUseGkN5dE5LYwivs2ncn7AaDyP5RKBRzxHXHrejrqxvU+2sgV5FdD/q2qs3wXFWlMkeedlilLN+JP3ftwm6DrsjlCMpZbKB3zkmo/vYXj77voVy1C5Duq7irB+DBiJcgAZPFMEC9CB0PnIe90T32itQlO3/Ucy0Imw3o3DjXiiE68cdzvbt0M24FbgWzU90sPN3UIUBGeVG1OWTZv9+O2gblqw0BtPZxTSOxuPAH4BLCj6HIZJqabZIThbXxEMoYnheg+M2Av4B/A7lyjYNabyaagQaavwK9SfNOwTYByVMtspNGPp7+N/Af9AFwCCUg3A06TZy7aJtGLLSGExnF9M4mKHonYsfoXzekWhS0V5n+2vobQFehqNurc1CnuNAZ39v8vMUFJ35Ukr/R6sQpOV4/OdAPC/k8RDOnu1O1tfE8ih/fhSat7GP+rn0UBnUUfTAvMjEddiWQaHYG1Hf61LgKKrnlVkfXRDXov7yZ4GfxC1oCUhSYVZA74ObiPRKSjtpC+EaqLQ1hvbTuVEDZhoHMwQ99T+NdB2PcmRWoqLxHPRg5+Vy9P8/F/Ic053t7oCM04Dvo+4U77xp7U4jLaei3Ez3MwVN+3BTyOOhsT3bnTyuiaUo3xKU+7UOle5kP5rWYYubw7YZckzeQq9zuBAlI3vZA93Y/4PyIroIP+li2XArzDTgh1SSFWsrzGOowrxKJRG0wznuQeTgpkE7aQtqoM5ADdQxVBqoHVADlYXG0H46T6U6/2Q8GlV1E6ZxGKailJBxzt+vAA8AY4HXnXVz0PQMLvujKOcBEc7Rh95/eBfKfzkTTUlQm3PW7oTR0p009Uz0PsvRzn5hj29kz3Ynr2tiXWTLuTSO/LsOW2+k/6QEpJXD1urcj5xTb57PdajCuLMj74u6igZSXWF2RHMYed+vejjBIdt2Ioy2oGHPd6Fh5W4D5XY/m8aNCauzy5loQMIYNC+RaRzMYPSgNpLq7txfOtvGOn/vgN7oMAgloD+HRtz1RDiHy6POvnsT/UX0rU4ULc9CDoM7Ki/K8UH2bHfyvCYmoDZhJ1qYNCfObVUGA7vRf5TOZ1R76CNQlLHWu59NOrmCrUhYbUFz1cxF0dy9qc4VNI2DiaIzVBqw0VQaMNM4mBEo0l7b07A11bPaz0PpE9uguaA+RRGEKOcANU7DkE3KPst8EYTV8hwUcd6ZSmQtyvFB9mx38rwmhtOEXZxRsRtwY4IqTK/n7+G0QYVJmbDagjVQSYii8znAsagBewkjLH1ouoMVPOt2Rg1Qr2fdx+g+sQ+KYp6GGqgo5xiG5os6Ho2qvSidf6GlCKPluSjFYjTVzlrY4yHYnu1OntfEFlRH/1sSc9gaYxUmO6yByoewOgc1YEYw81DDMxlNhLkXlZnpe2v2nYPmvpuDcoCjnGMDlM8zCU0wfC6aM62lu4Ji0EjLs4CTUS7s++gtBGujyWvDHO+lnj3bnbyuCZAvsyXKZVs9neKXD3PYGmMVJjusgcqHMDo3asCMYBahqU7Gou7601F9/QCNZvbSi94ZWDuVQaNzfBHlqt1J5aHlKTQoZ2Ka/0wLEKTlK2gk8iCUO7XY89k+xPFh7dnu5HFNuJwF7IemCGnZB3obdBCOQ9ENcQDqVpoFnOr8/blnn0uQw3Y1elowGhOk7erohjoL+JHnmFuQzjtihCVI5z40SnM1n+N2ofKCYiMd7kfdzXaPaA3MnskxDUNgDpthGEb2LIPmDDwaOAlNjfROoSUykmD2TI5pGBEbJWoYhpE9o9Acdi+ieaasYWpuzJ7JMQ0jYg6bYRhG9szEcoZbiZmYPZMyE9MwEiaWYRiGYRhGyTGHzTAMwzAMo+SYw2YYhmEYhlFyzGEzDMMwDMMoOf8DGaWzviV4HaUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay - 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay + 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅───(Ay) + 2⋅─────(Ax) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAApCAYAAABwf44kAAAPb0lEQVR4nO2de7QVVR3HPxd1qSlqaSqUBlmgpAlKvlNQwwdaLh+Z71tmZSpc85nPi4+FD9KLimZmQaat1LQsyDQVEcVH4FU0H0ixjAU+IHKZT8TbH9+Zzty5M+fMzJnXOef3WeuuOXdm9px9vr89s39779/e09bZ2YlhGIZhGIZRDvoVnYEmZDNgJvB34Bng4EJz01yYttli+uaL6V0ezBblwOzg0GY9Z6kzANgYFayNgbnAUODdIjPVJJi22WL65ovpXR7MFuXA7OBgPWfpcDLwgvN5KSpYAG8AK4CNishUk2DaZovpmz+u5qZ3sVjZLwdmhwDMOUuHbYHugP0jgTWAf+Wam+bCtM0W0zd/gjQ3vfPHyn45MDsEYM5ZOgQVrg2BXwHHAz15Z6iJMG2zxfTNH7/mpncxWNkvB2aHAMw5i89Q4EHgfWA+sAOwNb0L15rA3cBE4LGc89fImLbZYvrmTy3NTe98sLJfDswOETHnLB5DgCdRodoaOBu4A1ibSuFqA6aiAnhL7jlsXEzbbDF986eW5qZ3PljZLwdmhxhk4ZzNQt2QO2dw7XrZEPgu8spfAd4D3gJmo+7TWnpMAWYA453004EHgNeA151zdgUOBw5CBa4b2CZmPtcFFiMdfx8zbRHUqyvkp61LI2ls+mZPGhr7qaV5mnoH0Wg2cEnbFnmX/SAa0RbNaIcy8FngF8AS4ANgEdAFfNJ70uopf2k/YDiwisqMizJxGHADmhHyEPAqsAlaS+XnwH7OOUFj3JsBe6NuWC8f0btLdjb1O72dwGecfGxX57XyoB5dIV9tXTppHI1N3+ypV2M/UTRPU+8gOmksG7ikaYsiyn4QnTSeLZrRDkWzBRqq3Rj4A/Ai0mQ8sC9yTpdD+iIMAfqjBeSyXJekHRWIUTHTvQx8HXmuRwE/Br4DbIlmhBxC+KJ3Iwh2OrcneKZJUoYB44B7gWdRoS77VOJ6dIX8tHVpNI1N32i0k+y5APVr7Cdvzf0UXcbbKYctirYDNK4tms0OZeB65JiNQ72DZwN7AlejeLxL3RPTds62d7Z/8+1/FBWOsL+HU85HGA8CfwQ+9u1/Dfip83lUSNoeYDUUrOiyB2oFdaeWQ7gOjbv/CN3IoIIdRDPoCvlp6xJVY9M3Ga1Yhv3krbmfODa4D+XXX9G68T89wGXpZzGUNG1RtB0gui1OQ/k9LeQ6Q9Ew2Ky0MxhCM9hhd+Ae4Dg0PPoI8A7wNPmHXn0eGIOGMaf4jl2I8nUMsA6kP6wZ5pzdDdwfcP63gc1Rl2nRrHS2H4Ucn4tujEnAFaj1cL1zrDulPBwJjAauQYvyzXf2b0ewfs2gK+SjrUscjU3f+LRqGfaTp+Z+4trgDGAecAkaalnl7J+EKrWbUAu/DMS1RZF2gHi2mO1sdwq51rXIwTk55TwmoRHscDFwLhqWPR+V7XWBu4Cjgb8gh3dpRt/vZ09nex99Hd63UUN1DLL/A3k5Z5MCzr0SPXynAhelnI+4rA4c63y+N+ScJSgIciLwTdQ9Ow21chakkIf+SJPlKD4BKq2ssBiFZtAVstfWJa7Gpm88WrkM+8lLcz9JbPAMmhl3HGq5TwXOQT09twM/yCarsUlii6LsAPFtMQ8F3e8YcOww4GvIyXs24HieNIIdjgHOA55DzvGOwGBUrici23wDOWlXhlyjA9ggxnd2U32yx1Bn+3LI8QXIORtCys5ZG+qq/YjqhacNdemd6GxPofhF5i5DU3tnIG86jFudPy8XpJSHCcBA1Cpa4exzW1lhwxFeGllXyFZbl3o0Nn1r0+pl2E8emvtJaoPz0Cy5TtS7cCn6vcfQt5VfFEltUYQdIL4tVgJPoaG4gcihAQ1zXYVeZ5RHvmtRdjusjhywD4EjgGVoCBUqvZN/Qs7ZoCrX6QA+F+N7p1HdOVvf2b4VctzdvwH0jTlbRPX4D//frz1phyJv9Dm0wFwQq6FW2Ymoa/Nkaj98g/L0S+fYQwHHpta4np9xyHt/ET2IiuBLqCJ6nspYPujmXA58AVivSvq4ui4iuZ2jUgZdvdSjcVrlNk2Nm0lfSKcMp/lcgPJpXIt6bLAYTef/HBo+ewzFoH0Y4XsXYbbwk9QWjzpb79DmBSgo/yzCK3aXRTR/fVmLPdHM2D8jfwQ0qtdDZQjVbXC8V+U6g1CDMepfe535bnO2PdA35mwh4Y5VEEs8n8OGNF3WAG4DDkWtswkRv6OLvl2Lw5HXOw0VRi/dEa8LcBIwGc0u3Qv4d4y0aTIF2eJUKvEeLvNR0OVwggNBk+haj52jUBZdvSTVOGm5zVLjZtIXkmncRXbPBSinxrWoxwYAb3o+H0/0GfddmC38JLWF65ztiGKjtnSuMQdpWYsumr++rMVXne10z74RaNjwbef/Ac4266FtL65jvX7I8fW85/mds73q+OJqztlawJ3AWOB04CcxrtsVsK8dFbapwMwY1/LSgaavPod+9xsJr1MvR1Ppcr2vynnb0fdGTqprPXauRQfl0NVLUo3rKbdZadxB8+gLyTXuCtjXTv3PBSinxrWoxwag4Z9JaCbepmjdpRMjfndXwL52zBYQ3xaPoZ4Tt+fsOtSrfBLRhvi7Ava10zz1ZRS2cLavOdvBaIFXb3zcKGc7s8p1Okg35uwlZzsk5PgXne3LkO5szTDnbB00lXU08EO0qF3RnIXGzbtRkOWykPOyjndZHwUjrkQBuUHfNwjdDP4YBdO1Nm2oNZJEY9M3GlaGi6ceGwDsj3pVnkdDQrPQyvCT0fBVUUSxRZnsAPXbYgWa1TkSzfTcC90XT2eQ16g00j3R5vn8CWfr+ibznO2WqJw/QsVhCqKDdGPOHnK2Y1BImTeWsz9agPY94HFIzzlzJwN8SCXgEVRQZ6Au2nb0lvmiOR/NAJuLRKrWNdtW5VgtNkM358boRp2Auqm9dKFW6hXoBghiJAoS9c7uaWVdvUTR+CLia2z6CivD4aSlcRp0kcwGALuhnsvF6De/iXS4A1XIB6We22hEtUWZ7AD12cJlNlq49kbkCJ2XbhZj0Yj3xDOoJ/hw4LdUdJ6HHOM70cTFjhrXGZRyvhaintQxqCf0Ws+xCaixeiNa74y2zs7ONL50KGphzUUFz2U6apU9iYLzgpiI1j+JQzsKchxNvG7a41DX7iokTFBw5SKSBaz6GYAqtWec7VykkxvHsQ0qLEuBrXAMEsBawH+dz/2RZ52VrknJU1cvWWl8J6YvNF4ZbifZcwHS1fhk9PDdKmYekqSvxwbbokV+30NO2kLP+U+hZ/nuqIchLu0Ub4s87QD12cLLsVTiy05Ar0qqh3aKry/ztMVGaPh1E+CvqJE5FDU49kUxrkfRt6GZB1vQ+/VNL6AG6mg0nLkLzuub0uo5c9+XNcezrx+6sd3j/ndqgcatO1PKQxQGO9vVCPeaHyadwraUyuJ2b6Du6o3Q+8mgEjA6nvCbGBRUvgB1xX6ZylRraE1dvWSlsekrrAz3JqrG21Lfwppx0ie1wXK0DEIPsA+9HTPQq3ruR0N0YYuiZkVatsjTDpDcFk/4jv/T2T4F3Bzj+9OmzPfEJPQMGxtw7jIUU3YVes6s4+wfjRqFF6NJDUWwEDV6LkKO4v7oGXsN6j37f89kWj1nt6FuxLFoqKIVuAmtB3SE83+1wjISDQ8Noxzj8mXGr2tUTONomL7Z8yTwO+DygtIbolHtcA+qR3ZCDlozkLYtHka9gBfWSDcY+AfwGxTD1zCk8W7NEWgK/CvEX6SxkfF78l8heKbqhiie5nisUotCkhaWaRwd0zddhqJ3EL6P4m13QAt0dqNXHgWtaXdhxPSgleE/oHdg8mTU8/Lp9H9Ow1JLx1q2qJV+MXpjgpfhyDbDUvwdRwIHokkAjeqYZWmLNVBs++5o/bceese5+3EnXRQ5oSIRSZ2zfmjI4RY0froKva3ev55Ls5C0sKyJ3h04Eelk9CaNisk0DieNCsf0DWcIatHPR7qejeJa1kYaT0Fxe+7fZDS9/9aI6UHxj/OpBIWfDnwLDYl41yVrZaLoWM0WUdLPQQ1wL1ejnuh6h8g2d77zJhQb9jxwZp3XLIqsbbEKxUeCYrUGUAmRCKJhnbOkMWfDkCOyDL0G4RIUNNyMuIVlKvA9KoGF/sLyBCosr6LKrc1J8yByYo3e1NIVVDGdhSqmE6hUTLugisk0DieKvrUqHNO3OlNQGMd45/9XgAeA/YDXnX3uopfnoHcKjnLOi5q+x0k7HcWrnIOWAfDHiLUyUe0QZov7I6Sfg5Z7cTkE9UIfmkL+90WNn/+gIPEOoi8AXDbysMVAJ/1T1O7Jd52z7gS/pVCSOmfPkc6QaCMQpbAFFZbd0FTeZ6lMRz+G6l2wrUQaFdOumMZhRNG3VoVj+oazGbA3fSczfETfiuBcpPMoKi89jpP+PvRsuQQ4gPC3sLQicXSEvraImv5xtEDyp1Cw/xUoqHt5HXl3+Znz1+jkZYsRqDMoSojFARHOKSVpLkLbjNRTWGbTOg5sXNKqmEzjYNKqcEzfcEagXnP/iMH29F4V/nzUc7kHlR6zOOlBDZJtkS3KvDJ7EcTRMcgWUdPPReErI9G6WStRA8iokJcthtOAw5RxsQdvdaoVlm7P/8NpgcKSIlF1BauYkhBVX2+FcypW4cShBy0xsKZn3x6o4u52/r8ADcePordjFjU9qOzfhXoY7gEuTSHvzURUHcNsETX9B+gZfyDqwT8d3S9GhbxssQ3qzW9qzDmrjhWWbLCKKVuswsmeuUi/SWhhybFU3nLQjYZsxqEYyXfQqvGbogVIo6QHTYSZgdYam4YqtX2ovNjZiKZjNVtESe8yB60ROAfFWhu9ycsW/dD6cAOJ9+7LhsKcs+pYYckGq5iyxSqc7FmClhbZDw21n4HK6buoN+BMtATJo1QW810K7Bwh/QI01HwvsonbKHkWTZKZmOkvayxq6dhGdVvUSu+lG70P0T/D2RB52eJc4GA027xpG+xpLULbzByFHob90TDRLOA05/+PPedcjpyzG1BlZ1Snmq4boJt3FvB9T5rbkca7YdQiSrkFvaLlZtRL+XzOeTSMRuJ+FLhuz3cjc8w5M4zWxiocwwinH1pT8XjgFLSM1IpCc2S0BDZb0zBaD2+FszVaZ8gwjL7sjtb5ewktNWOOmZEL5pwZRuthFY5hRGMmFpttFIA5Z4bReszEKhzDMIzSYg9owzAMwzCMEmHOmWEYhmEYRokw58wwDMMwDKNEmHNmGIZhGIZRIsw5MwzDMAzDKBH/A9YnlaLwpoacAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jz + 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay + 2 \\frac{d^{2}}{d zd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz + 2⋅───(Az) - 2⋅───(Az) - 2⋅───(Az) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(euler_equations(EM_invariant_Poynting.t + current_potential.t , φ(t, x, y, z), [t, x, y, z])[0].subs(simpler))\n", "display(euler_equations(EM_invariant_Poynting.t + current_potential.t , Ax(t, x, y, z), [t, x, y, z])[0].subs(simpler))\n", "display(euler_equations(EM_invariant_Poynting.t + current_potential.t , Ay(t, x, y, z), [t, x, y, z])[0].subs(simpler))\n", "display(euler_equations(EM_invariant_Poynting.t + current_potential.t , Az(t, x, y, z), [t, x, y, z])[0].subs(simpler))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I have not been successful in using a substitution dictionary to write out these 4 equations in the standard form, as first order equations for $\\vec{E}$ and $\\vec{B}$. For the first equation, there are 2 spatial derivatives of $\\phi$, so that indicates one is taking the divergence. Put the differentials on the other side, and the result is:\n", "\n", "$$\\rho = \\nabla \\cdot E$$\n", "\n", "if\n", "\n", "$$\\vec{E}_q = (0, - 2 \\frac{\\partial \\vec{A}}{\\partial t} - 2 \\vec{\\nabla} \\phi)$$\n", "\n", "This is Gauss's law.\n", "\n", "There may be some who would argue that the **factor of 2** means this approach is in error. One can go out and directly measure electric and magnetic fields. The same cannot be said about potentials. Potentials are real things as demonstrated by the Aharonov-Bohm effect. Measuring potentials is not, so a factor of 2 is a change of scale. For me, simplicity trumps tradition." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The other three equations have a pattern. Put the current density on the other side. The first and last differentials together make up a time derivative of the negative electric field. The only way I know how to figure out the pattern of $\\vec{\\nabla} \\times (\\vec{\\nabla} \\times \\vec{A})$ is with pencil and paper. There is a pattern. The curl of the $B_x$ term has 2 negative terms that are second order for $A_x$ in $y$ and in $z$. There will be two positive mixed terms that use $A_y$ and $A_z$. With this knowledge, we can rewrite the last three equations like so:\n", "\n", "$$\\vec{J} = \\vec{\\nabla} \\times \\vec{B} - \\frac{\\partial \\vec{E}}{\\partial t}$$\n", "\n", "if \n", "\n", "$$\\vec{B}_q = (0, 2 \\vec{\\nabla} \\times \\vec{A})$$\n", "\n", "This is Ampere's law.\n", "\n", "In the name of logical consistency, I prefer to write both Gauss's law and Ampere's law as one space-time number expression as it was derived:\n", "\n", "$$(\\rho, \\vec{J}) = \\left(\\nabla \\cdot E, \\vec{\\nabla} \\times \\vec{B} - \\frac{\\partial \\vec{E}}{\\partial t}\\right)$$\n", "\n", "To my eye, it makes more clear: one space-time number expression is about the complete current density's relationship to changing electromagnetic fields." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How complicated does it look to derive the Maxwell source equations in a few lines? Let me try..." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAApCAYAAADTV+jiAAAO+ElEQVR4nO2debAU1RWHv6cYtyBEDHEJCpoA4gIKEReURWNQYzQuUVTkVcgmIItLxP3hUhhBfagkUbKglqaiJMaNGKwoKoiJog/3NaJSgAoxhnKHvPzx67b79fTMdM/0TM9Mn69qqt/r5c6d3719+tx7z73d1NLSgmEYhmEYRqOyUdoZqAF6AAuBF4BlwDGp5qZ+MN3iYXolg+mYLqZ/upj+JdJkPTtsB3RHFac7sBToA3yUZqbqANMtHqZXMpiO6WL6p4vpXyJZ7dmZALzo/L0KVRyAd4H3gW3SyFQdYLrFw/RKBtMxfdwyMP2rj9X/BMiqs9MfaAvZPwjYBHi7qrmpH0y3eJheyWA6pk9YGZj+1cHqfwKYs+PRDbgZGAu0VztDdYLpFg/TKxlMx/QJloHpXz2s/idAFpydPsCDwCfAs8A+wO50rDybAncC04HHqpy/WsV0i4fplQymY/oUKwPTv3JY/a8Qje7s9Ab+iSrN7sBU4A5gc7zK0wTMRRXslqrnsDYx3eJheiWD6Zg+xcrA9K8cVv8rSK07O92AHyEv9jXgY+ADYBHqviuW/9nAfGCSc/19wN+B1cA7zjkHACcAR6MK1QbskdgvqD7lagamW1zdTK/S6lmQNHX8MrACDQn8JYH0qkEaZVDJepz1MrD6H5+vA78DVgKfAsuBVuArwRM7VTNXJXA88CsUgf4Q8BbwNbS2wG+Aw5xzwsYsewCHoG5AP+vp2CW4iNp3+uJQjmZgusXVzfQqrZ4FSVvHFmAHlN+9K5B+JUijDCpZj1vIbhlY/Y/PLmgYrztwF/AS0m8SMBI5hmvdk6thfJuRgMNKuPYV4HvIezsZOBf4IdAXRaAfS/5FlfYCNuBN03MZSHhkey3RTDqagekWVzfTq7R6FiRNHfsBE4H7gWfQg6da03mbsTIAK4Osal8Ov0SOzkTU0zUVGAFcg2KfLvefXMjZGYJWavwv8i7fBC4ock3SPAjcA/wvsH818Gvn72F5rm0HNkbBXC5DkdfallgOxUHA3cAY1KX4KPAh8DSwX8LfVYxyNAPTLa5upldHotazINXUMcj1KBbiDGTsQQ+fIAtQPoMPLzeOoh24ojJZDCVrZXAmyuOZedLog4YyHqlEBvOQVBnUuvYui1Fe830ermhOPXYGDkXDVrMDxy5GdnE0sKW7M5/jchmqMF1Rgc0BtgIuBc5PMMPl8LmzXZ/n+FJU8Wei7q4j0FQ9SLbyXIqcQtcDvwvddH8GBgB/Q6te1gLFNAPTLYxCupleuUSpZ0GqpWOQk4DhqJX4IgoOhfCu/LPRQ+0y9GBymYkc0DmodVkLNGIZLHK2++ZJ5zpULhOSzmCJxCmDWtfe5U5gWsjnLef4QxXLaUdGONsF5Dqa65BTtgW+uhIWszMFOTRXohvXHWu8AbUgz0DdQ8EvqCadgFOdv+/Pc85KFCA2HfgB6h68CbUKXk0oH6NRb9dzqMIMBnoB5znf2xk4CjgFmJHQd5ZKFM3AdAtSTDfTqyNR61mQaugYpDPSay2KWQCvZRtm7JehGTBjUJnMRWVwBnA78LMK5TMujVoGT6EA4MEh6RwPfBu41nd9msQtg1rX3mVmyL4ZwI7ofrikwPdNRh0oUWkjf7B0H2f7Sp7jr6Ken94oyDvH2dketSCXoLFHf1BVGwoA6ovG9N6MkemkuQJNzZuPWrT5uNX5+LkooTx0QhXzM2AUsAZ1O4LXArkXPYR6JvSd5RBVMzDd/ETRzfTyiFPPglRSxzCmIZs3AS27D17LNl83/gVoNkwLmsFyOfqdo0m3AeinUcvgc+AJNJy7PXIQQEMVV6PXJ1Qyr3EopQxqWfswmtAQ0mnO9nQKB2JPBnaKkb+byO/sdHG2H+Q57u7v6u4IDmONwqs4YTfuh852Q54vWE7uGN7vnWMPhRybmyedQkxE3u5LyMCkxQgUvf5X1OIGDTG043U7uhp+XCCd5WRHMzDd4mJ6VYbdkHF+Hi+2AvQAXQt8Aw3dB1mBprbuhIZNHkMxPJ9F+M7lWBn4KaUMFjtb/1DWRShA+BzyP/xclmNlAKXXf5eNkTanoVGgCRSfcdYTOUhRP82Rf00uTc72izwFe3aOQoZzfp4EdkAOz8o8x1vJ7aYa4KR7E6poftryZjWc8cAs9Hr7g4F/x7w+SQ50tvf59u2Fus/WOf+7MRSFuiFbyY5mYLrFxfSqDLOR/ZtCbuPtWRRUOoDwYNf3fH+PJfobp1uxMvBTShm4zs5gFK/W17l+CdKwGK1YGUB59X8T4DbgONTDOa1CeSyE69R2yXN8q8B5HZydTmiO+hrCb95vAduiLvN83bWtIfuaUUWaiwIsS2UymlL2HKpE75aRVhLs4mxXO9teaCEj//jsMGe7sEA6rSH7mmlMzcB0i4vplTyn4A0FLihw3t7kGvtRKG5hNbKHk1DrNgqtIfuasTKIUwaPoda627NzPeplGE+09YRaQ/Y1k60yKKf+bwbMQwHUZwFXxfjeySQXs/Oys+2d5/g3ne0XMT1+Z2c3NO3tS2h4K+jQuNP9boyWz0Q5B42BtqEgtDUh50Sp6EnR5Pt7C2c70Nk+5Wz7oiGIR/EKpppE0Qyqp1tT4P961i0NzepZL6iNlxU2oRbfDBT/cQvh+eqJHlbBuIXDUev/eaT5I2j13FloyCItslQG76NZQ4PQTKKD0aJ+T1cmu5GpJbtRiC6Urv2WaOmL4cA4pHscJpNczI476+tQcv2VzmhBwY+Bx92dfmfHNaJd0eqD/qGs8Sgo7360pkA1uRBFeC9FPyxft2DwYVoqPVAl6I4qxDTUXRpkGWrlnQD8ES96/SlUWeahKYeTE8pXHKJqBqabn2rWtSzpBcnVs3K5BPXIXIkeUGEMQoGw/hkpQ5DWK9BvfQ/9/jvQQ+7oymS3KFkqA5dFaCG8G5BTcUEF8hiHaj+jyqGV0rTvgnyCwagn7Obcy4rSs4Rr8vE66pU6FPkn1/mOTUOO2Q14ccahzs496Ka+Dd3QByIv6UnkSVeTMagSbUAt14kh5yyntCCyfKxHXdPL0INoKXLygkN7v0Xjnd8HHkAPL9D005FoXHMUXgu8WqShGZhucTG9PCYgg7VrGfmJksYezjlvU3iK7HPod+2KXsLYGw3ff4Ba7auc8+Yhu3gUspOPlp79kshSGfiD7xcDP0Gz4aaQblxMUmVQDf3L0f42YH/0otKd8aaq+5mO1gqqFuPQsOa1qCfqReSMDUfDVx3WBAw6O58BJyJP9VS0ZPQbyHO+Cr12vpr0crYbk7/l+jDJVqRVeMbsXdRtug3eokkua1CsxNVoKqS7UuNwFEx6KQpSqzZJaQamW5Ak65rp5dGf8hdOC6YxE5XBEb59blDmJHwtvhA+QcHefYE90QKO7cB3UIvSz7nICZ1B/sXuKkWWyuAfvmNvONsnUGMgTZIqg2roX6r27nR/UFxv8P1dIBvWUlq2S+Z11At1CWr4HY5s6rWod6eDE9zU0tICKqh1yDMaSOMxB7UCRsW8bhAaauhH4fHWXsC/gD9Q/d6vSmK6xacUzbKsF6i1+CfgFwmm8TAKNr24rJxlh3oqg7vRA3xf9CBuBOpJ/7rEXWenH+quqnZXeLUoxWvuhsYlx1I8sMwN5Eo7SC5pTLf4xNUsa3r1Qe8T+gRNcd0HLb7W5hw/HnWF+wMZZ6GW5lcjpLEJ6qE+CK2/0o63UJohCum3Aq0I7WcAKpN+EdOoZBmcBByJgmPr1dEpdg+4by4Ifi6OmIbdAyG4zo7bm1PPRtQlCWO6KXoHyHQ0JliMLDyEohjBrOlWrtHKml69UevzWaTTVBTguzmeZvOc427Q6VloaH0kiiEslsYGFEwMGr/fDq8L3iiu3xK0zIifa1CP5QsR00i6DHZ0vmMOWgDweeDnZaSXJlHugdlIM/czCy11cGvENOweCMGN2QlOZ61X3EowFwWw9SHcmJ6DjOmP8Yzp/siYNjnXP4iGFqLgPoTaCp1Uw0TRrZgRzJpuUTSbTcex+qloVtWtZE8vkB7zUcwAwGvovTWHAe84+9rR+6buQ2Py56Fp3q/HSGN7NCz/BLUx3beWKKbfEhT46XIs6q08LkYakGwZjEQNgv+g+KnJRF/IsdaIot06vAVDz0PvyhrmnBs1DbsHArjOzunOp95JwpgegB5Iz+BNJx1N4W7A7yaS+/SIolsxI5g13co1WkPIll49gEPIDW5cT67ztgAZ6cvQb34yZhp7oVluZuQ7EkW/x9FklK1REOuVKAB0bYw0INkyuJF01ndLmjj3AGg20ThkM9zF8eweKJGwt57XK0kYU9AaDsF3hjUyUXUrZgSzpFsSRitLeoGM7wZkgP0MJHcV1xHIkd6IjqvQRk1jAPU71FdJoui3FMV7DELrrHyOHPs4aYCVQRhx7oELUY/xULwenThpDMD070AjGdtClaAtsC+fMc0iUXXzG8Ep5BrBLBGnrl2I1sQZim/p8gzSjmZ9burbNxQ9UNt8+/qjxRXHoVk3l5eQxh6ox8zoSBT9PkUPySNRb+RZ6F6PkwZYGYQRVbuLUIjFMDo6OnHSMP0DNJKzk4QxzSJRdStmBLNEEkYrayxFdWgmet/XEXirsLY5253Q0OAMtFT8RWhtmwNjpAGya3uiuIWuCf+OeiaqfkvQWlFL0GKKpaRhZZBLFO3ORwsTnoh60Ld1PpvFSANM/xwaydlJwphmkag3DxQ2glkiCaOVNVai6fWHoWHjs9E9+BGaCbk1WkH6XrwGyDNoQsH0iGm4nA8cg2YQZr0x4yeqfm3oXUPB2Zdx0rAyyKWYdk1ollk3tEr0Kt9nv4hpuJj+AdxFBRuFk5Fh7IyGGB5BLzDtjLzbxc6+n/quuR15v0PILoV0879gbQxasbQ/mv6ZZQpp1o5mjmwVct0IvJfYGUYt8gAach2fdkYMIykazdkxKosZQcNoTDZC64yNRTNz+6FXmBhGQ9BIs7GMyuA3gruj6dOGYTQWB6E1n15Gy0qYo2M0FObsGMUwI2gYjc9CGiuG0zA6YM6OUYyFmBE0DMMw6hh7iBmGYRiG0dCYs2MYhmEYRkNjzo5hGIZhGA2NOTuGYRiGYTQ05uwYhmEYhtHQ/B9IsDVANryMHAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ + 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay + 2 \\frac{d^{2}}{d zd t} Az = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) + 2⋅───(φ) + 2⋅───(φ) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) =\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz \n", "\n", " \n", " \n", " 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAApCAYAAACIn3XTAAAPUElEQVR4nO2de7QVVR3HPxd1+QoxMVQMhTSumgYo+UhFUDMVrZaPzAd6l1TLN9fUJB948bFQIb2oZGYWStqq6KGpmaYgoqiEXhR8oBTLWIIKkcsUH+Dtj+9MZ+65c86Z55k5c3+ftc6ac+ec2Wff72/P7N/s/du/aWpra8MwDMMwDMPIL72yrkBBGQDMBl4CFgLHZFqb4mH6po9pnB2mfX4wW2SP2cChyUbYUmE7oB9qXP2ABUAz8EGWlSoQpm/6mMbZYdrnB7NF9pgNHGyELTnOAV523q9AjQvgbWANsHUWlSoQpm/6mMbZYdrnB7NF9pgNfDCHLTmGAB0++4cDGwH/qmttiofpmz6mcXaY9vnBbJE9ZgMfzGFLDr8G1he4CxgLdNa7QgXD9E0f0zg7TPv8YLbIHrOBD+awRaMZeAz4EHgR2BvYna4NbGPgj8Ak4Kk616/RMX3TxzTODtM+P5gtssdsEBBz2MIzGHgWNazdgfHA74BNKTWwJmA6aoQz6l7Dxsb0TR/TODtM+/xgtsges0EI0nDY5qDhyv1SKDsp+gLfRR7768Ba4F1gLhpurabLNOBBYJxz7APAo8BK4C3nO/sDJwDfQo2uA9gjQj0/AyxHev4pwvFZEEdbqK++YBqbxv7E1bgS9dbeD7OHMFuEo6g2yAOfB34BvAl8BCwD2oHPer+0YcI/2gsYCqyntKojjxwP3IpWn8wC3gC2Qfldfg4c4XynfJ58AHAoGrL1so6uw7dzScYZbgO2d+qxZwLl1YOo2kL99QXT2MU07kocjSuRhfZ+tGH2MFuEp6g2yJqd0DRvP+Be4BWkyTjgcOSwrobkRRgM9EYJ7tLOkdKCGsbICMcuAb6BvNqTgR8BpwO7oNUnx+KfnG8Y/s7oXvivaInDbsB5wEPAC6hxN8JS5qjaQn31BdPYS1E1biHadSKOxpWot/Z+ZGmPFup/za5ET7ZFC/k4J/JggzzwE+SsnYdGEccDBwM3ovi+a9wvJu2w7eVs/162/2HUQMqN6c5NdwLXJlyXajwG/Bn4tGz/SuCnzvuRPsd1AhugAEiXg9CdUUeiNYRbkD4/QCczqIGXUxRtob76QnCNIV86m8bpE0fjStRbez+C2OMCVNcLKpTRjKZt5qRRwQokbY9GsQXAk6i+lV6Pp15TURQbjADuA05DU6tPAO8Dz1P/UK4vAIehKdBpZZ9dgeo1Btgc6uewXYSMfDUykMsUJNrtyKvMA58423U+ny1AF6opaBhzNFpmDMk2sJOAUcjzfhkFZIL/kHlRtIX66QvhNIbG0dk0Tp9aGleintr7EdQec53tvhXKuRnZ55ykKxiRKPZoFFuAYsYm+rzecD6flWpNg9EoNrgKPebKHcW7F92A/AGFc/0VPVmhXhzsbB+muyP8HnLWN8M5F5OOYavksC1EqztOQ97idOASdGfxW+CMhOsRlQ2BU533D/l8/iYKrpwEfBv9X3eiO9HXEqpDb2AymrNuc/a5d19+J3NRtIX66AvhNYbG0Nk0Tp8gGleiXtr7EcYez6GA8n18yjke+Bpwk+f4LIlqj0axBcihKWcysAM6R65MtnqhaRQbjAEuAxYhZ3kfYBC6xkxCdvkmcArS149WYMsQv9lB9cUkzc52SYXPX0MjcIOBR5N02JrQcO46/E/ky9BKjza0MuYa5M2OobtnmRXXoqXFD6K6+XG38/IyIcE6TAT6o7vXNc4+9+6r0lRSUbSF9PWFaBpD/nU2jdMnqMaVqIf2foSxxyfAfDR11B91rKBpmRvQ44HqUecgxLFHI9iinCY0dXamsz2X7JPINoINNkRO2cfAicAqNP0KpRHl+5HDNrBKOa3AjiF+906qO2x9nO27FT53928J3adEl1F9rrz89SvPsc3IQ12EEuCVsxwtU90RDak/hWJVPq7yz1Sr1y+dz2b5fDY9QJnlnIc8+1dQ55AFX0In4GJKMQGgC+ZqYGdgC5/jktY2qM2DkgdtXaJqDPnW2TRO/zqRJ43DEMUeTzpb77ToBBRwfjGVOxiXZfSMa3ZY4pwbGyCdzgSuRw5fLWdtGXZOgKYetwf+gnwU0IxgJ6XpV/eGcG2VcgYipznoqyVmvZucbSd0nxJdir+zVYk3Pe8rTYd6ecfzfizBV5K2030Ycijyhu9EjdJLR8ByXc4GpqLVrYcA/w55fFJMQzY5H62e8fIiCugcin+wb1Rt49g8CHnR1iWOxpBPnU1j0U5614m8aRyGKPZwHbZ9UHzPLs7x85CWtWinZ1yzwxL13NgIuAc4Do0+Twz4e+3YOQFwoLN9wLNvGJpyfM/5241dS3tK3It749OnwudbeL9X7rAdEuOHazlsJ6K5+JXAtijHyJkBy2732deCGt10FEQYlVa0fHYR+v/fjlFWHE6hNET7cJXv7Un3kzmOtnFsXotW8qGtSxyNIZ86t2Iau7T77Gsh/nWilXxpHIao9ngK3dW7I2y3oBGeswk2Bdfus6+FYl2zwxLVFpsAM1FQ/oXAj0P8ZrvPvhZ63jmxk7Nd6WwHoaS03pi7kc52dpVyWkk2hu1VZzu4wudfdLZLINlFB9UctiORN78YDU3OQRmTp6Kh1Ky4GM2/d6BA2lU+30k7PqAJedGTUezIjAq/ORCdGOUxDqZtMPoQXWPIp85BNIb66Wwa54e415U1aPXicLSi8RCUNPX5dKobmEa0RxxbbI5SUIwCzkI2yJpGs0GT5/1mztb1V55ztruga84TlJwoP1pJNoZtlrM9DIWoeeN0e6OkuWuBpyE5h81dcPAxpeBJlwPQ3cFyp1LvAJej54VdixLFZcHlaHXNAqdelYZzmyrsD8oAdIL2QyfrRDTF4OVKNJpwPToZ/BiOAoG9q4h6urYuQTRuJ5rGkE+dg2oMyehsGqevcdJEva64zEXJXW9DnfJlKdQxDI1sjyi26IMC+fdBo2J3+R9WVxrVBgvR6P0JwG8oafwccpRnogWTrTXKGZhwvZai0dbD0Oj1zZ7PJiKH/TaUj42mtra2JH60Gd0BL0CNzmUISuq3Fl2Ql3o+m+98dwTyasPSgoInRxF+WPc0NBy8HgnkF0C7jGiBsOVshzq5hc52AdLLjcvZAzWaFcCuOIbxYRPgv8773mgINS1t41BPbV3S0ngt6bbhqJjGwWkh2nUiSY3PQRfjXUP8ftwy4tjD5VRK8WrfQ48fikML+bhmx7VHvWwxE406P4uC5f2YhHKZhaGFnndObI2mb7cB/oZuQJvRDeHhKEbwZLrfhNaDnej6aKqXkZM+Ck2FfhXn0VRJjbC5zwKb59m3M1ri2wl8na4XYdBjLR5Bw8SVEjSmxSBnuwGVPerHqd3wgjSYFc4LNM+/BjUeN+mhG4Q6jsonMihg/TU0dPtlZNierq1LWhqvJp9tOCmNIbjOpnF3gmo8hPiJQMOWEdUez3g++6eznQ/cEeK30yBP9qiXLUY4+/em+/M2QedhW4h6xCVPNvArYwq6jo32+e4qFKN2A9J1c2f/KLQQ4Sq0eCILlqKb0iuR83gkutbehEbZ/j+KmdQI2z1ouHE0GsLtKdyOckWd6PxdrcGAjDIDTTPkZX4/r5RrGxTTOBxRdDaNw/Es8HvguozLCMt96Fq2L3LaikJcLbOwRdFI45x4HI0YXlHjuEHAP4Bfo/jMhiGJR1MNQ0uNXydaIslGptzD/wqVV8n2RTEIY7FOLghR7sBM4/CE1dk0rk4zeubihyied2+UVLTD+Xw5enKDl6FoWmu3gGUc73zfG/w8FY3OfC6h/+Mk4GgU5N7Izlo1LcfjnwPxioDHQ31s0egkoWG1MjZC8fMjUK7ATrrH0ntxF3VkvYAmNFEdtl5oKHYGmntdD5xO97wyRSJOg9kYPQ9uEtLL6EoSnZxpXJtaOtfqwEzj6gxGd/0vIl3HoxiZTSlpPA/d2Hm5EY10vhSwjJnO5+4igAuB76DpFG8Ou7Ds4Pze7SjGaTHwwxjlZU0tLaeh2Ez3NRWlfbg74PGQni2KQhIa1ipjPYp9BcV+bUdpOtmPhnXYosaw7YYck1XocQ5Xo2DkouI2mOnA9ykFK5Y3mGdQg3mDUiBok3PcY8jBNbpSS1uo3cmZxrUJovM0usafjEerqu7GNA7CNBQSMs75+3XgUeAI4C1n3zyUnsHlWDTKeVyIMjrR8w8fQPEvl6CUBOXxf2E5HDnj/0Exsq0ET1qcR4Jo6SZNvQQ9z3Kk872gx6dli6KQhIZByuiPbDmf2iP/rsPWEeH/yZSoDtsikplObRTiNJj9Uaf3AqXUBGOoPmTbk0iikzONaxO086rUgR2AaVyNAcChdA8OX0fXjuFplPh0KxSAfj0KNl4dogxQKoD56Gb5KKo/YSYoP3NeRSCMlpei68tISg/hztoWRSAJDYOWMQwNGgUJ0zgqwHdySZKJc4tK3AYzl57l3IYhiU4OTONahLlwgn8HZhpXZxgaaS+fadiLrlntF6DwieEoF9QnyJkOUwZoBGIIsknes8xnQVAtL0cjzgdRGlkLczyYLSqRhIZByxhKA05xhsUuwLWp1mA6PH8PpQc0mIQJqq23kzufrp2cUZugOoM6sDNQB7YEIyidKN3Bxp59ByGnrMOz7yN0nTgajWJeiNpzmDKGoHxRZ6GVnNck8y8UiiBaTkD55UbS1VkLejyYLaqRhIZBy9gDjf4XGnPYamMNJj2S6OSM2gTVuVoHZlRnAWqnU1AizNGUMtN3lH13Hsp9Nw/FAIcpY0c0tT0ZJbWdgPLXHYjhpZaWlwLnoeD299FTCLZFyWuDHA9mi1okoWHQ86oXyl3Xn3DP+mwozGGrjTWY9EiikzNqE0TnWh2YUZ03UaqTI1D8zUWoA/oApSfw0oGeGVi+8rlWGVuhh1XfT2kU4gW0ym5Skv9MAaim5eto9Wtf4ElKSaFXAPsFON5sEYwkNAx6Xl0KHIMyChR2lDOpxLlF52TUgHqjaaU5wAXO3596vnMdcthuRc6FUZsg2oIei3IHGj5fXOc6FoFqOneilYFb+Bx3MKUHFBvJ8AiabrZrhGEYgTGHzWgUrJMzGpleKAnoWOBclBppTaY1MgyjobBVokae8XZyu6M0E4bRiIxAOexeRWlpzFkzDCMU5rAZecY6OaMozMZihg3DiIE5bEaemY11coZhGIZhnaFhGIZhGEbeMYfNMAzDMAwj55jDZhiGYRiGkXPMYTMMwzAMw8g55rAZhmEYhmHknP8By/mw8xg6BEIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAAnCAYAAACylRSjAAAPX0lEQVR4nO2debAcVRWHv8dSrCFokNWwiCaAQBLAsAghAUTCohSLyP4KRNnzEJDI+sJSARLhBYiIKAYQLCGKICCLkBACEWLghX2LppBKwiZSyE54/vHrdnrm9fT03j0z56ua6nm9zX2/c7vv6XPPvd3R3d2NYRiGYRiGUV6WKboALcpgYCbwHDAf2K/Q0rQepm/2mMbFYdqXB7NF8ZgNHDoswpYJ6wBrosq1JjAPGAp8UGShWgjTN3tM4+Iw7cuD2aJ4zAYOFmFLjxOB553vi1HlAngDeAdYo4hCtRCmb/aYxsVh2pcHs0XxmA18MIctPYYBvT7rtwGWB/6Va2laD9M3e0zj4jDty4PZonjMBj6Yw5YefhVsEHADcDTQl3eBWgzTN3tM4+Iw7cuD2aJ4zAY+mMMWj6HAg8BHwNPASGBzqivYCsBtwETg0ZzL1+yYvtljGheHaV8ezBbFYzYIiTls0RkCPI4q1ubAeOBWYCUqFawDmIYq4Y25l7C5MX2zxzQuDtO+PJgtisdsEIEsHLZZKFy5fQbnTotBwA+Qx/4K8CHwLjAbhVuDdJkK3A2Mc469C3gAWAK87uzzTeAgYF9U6XqBLWKUc1XgNaTnn2IcXwRJtIV89QXT2DT2J6nG9chbez/MHsJsEY1WtUEZ+DJwHbAI+BhYCPQAX/DutFzKP7oMMBxYSmVURxk5ELgajT6ZAbwKrIXmd/kVMNbZp7affDCwGwrZevmM6vDtbNJxhruB9ZxybJXC+fIgrraQv75gGruYxtUk0bgeRWjvRzdmD7NFdFrVBkWzMermXRO4HXgBaTIO2AM5rG9D+iIMAQagCe6yniOlE1WM0TGOfQn4DvJqDwV+ChwFbIJGn+yP/+R8I/B3RrfGf0RLEjYDTgbuAZ5ClbsZhjLH1Rby1RdMYy+tqnEn8e4TSTSuR97a+1GkPTrJ/55dj3a2RSfluCbKYIMy8HPkrJ2MoojjgV2Ay1F+30Xujmk7bFs7y7971p2KKsepdY4ZikKAs1IuSxAPAn8GPq9ZvwT4hfN9tM9xfcCyKAHSZWf0ZNSbagnhKtR3/2N0MYMquJdW0hby1RfCaQzl09k0zp4kGtcjb+39CGuP+1B5axtgN5+oD7g4myL6krY9mskWj6Dy1vs8lHlJRavYYBRwB3Ak6lp9GHgfeJL8U7m+AuyOukCn1mw7D5XrcGAVyMdhm+0st6tzzJXIaCemXJa4fOosP/PZNg81GpNRGHMvNMwY0q1ghwBjkOf9PErIhP4h81bSFvLTF8JrDM2ls2mcPY00rkee2vsRxR6no4b5QqS7y2TU0F2LIgFlII49mskWtwETfD6vOttnZFrScDSLDS5Ar7lyo3i3o4fBP6J0rnvRmxXyYhdneR/9HeH3kLO+Ms59Me0cNj+H7QmUnLitz/4HAt8CrqDyhFEkywFHON/v8dm+CCVXTgS+h0K516OowMsplWEAMAn1WXc761xtai/mVtIW8tEXomkMzaOzaZw9YTSuR17a+xHVHvPRiLwj0RP+NOBMFA26BTg2u6JGIq49mskWk33WTQLWR3Y5P93iRaZZbHA4cDbwDHKWtwU2QvV6IrLLd4HDkL5+dAGrR/jNXoIHkwx1li/V2f4yisANAR5I02HrQOHcz6i+qX4KzEVhyHWRkUAhvsvQqybOTbEcSbgYDS2+G3naftzkfLykWf4JSKcT0Ss4oPL0VRsubzVtIXt9IZrG0Dw6m8bZE1bjeuShvR9R7QFq3A5CTsWqKJfmXtTw1UYDiiKJPZrJFi4dqOvsOGd5EsVPItsMNlgOOWWfAAcDb6HuV6hE9+9EDtuGAefpAjaI8LvXE+ywDXSW79bZ7q5fHfp3iS4kuK+89vNbz7FDkYf6DJoAz8sjztLb3XEuSl48I6CwQeX6jbNths+2aQ3O58fJyLN/Ad2QiuDr6AJ8lkpOAKjxehv4KrBazTFZaBvW5mEpg7YucTSG8utsGmd/nyiTxlGIa4/X0NQCG6Au6UdRTtsnIX5zIe1xz45KXFuAuqanIWftUuTwNXLWFmLXBKjrcT3gL8hHAfUI9lHpfnUfQj4MOM+GyGkO++lMWO4OZ9kH/btEF9Df2Qpikee7X3eoi3sj3hb1FW8CnALMQR5oI3roH4Ycjrzh61Gl9NIb4pxeTgCmoNGtuwL/jnh8WkxFNjkFjZ7x8jRK6BxOdeJ1Um2T2DwMZdHWJY7GUG6dTWPRQ3b3ibJpHIW49gB40/P9aMKP/u+hPe7ZUYlri+WBm4EDUMRzQsjf68GuCYCdnOVdnnUjUJfje87fbu5a1l3iXtyH0IF1tq/m3a/WYds1wQ8HOWyPIg/RfXK+Cj0tnEC4cG6Pz7pOVOmmoSTCuHSh4bPPoP//jQTnSsJhVEK09wXstxXVF3NSbZPYvBFdlENbl7gaQ3l17sI0dunxWddJ8vtEF+XSOApJ7HEwyp9aAqyN5oU6LuTv9vis66S17tlRiWuLFYHpKCn/NOBnEX6zx2ddJ+13TWzsLJc4y43QpLTenLvRznJmwHm6SDeH7UVnOaTO9q85y5cg3UEHQQ7bO2gkzDZodMyuaAK+J1P8/Ticgfrfe1FS81s++2SdH9CBvOhJKI/nxjq/uSHSrTbHwbQNx0Diawzl1DmMxpCfzqZxeUh6X9kTRWCeRd1Js9As91NQ91dRNKM9kthiFTQFxRjgeHQ9FE2z2aDD831lZ+n6K084y01QPX+YihPlRxfp5rDNcJa7oxQ1b27oADRp7ofA3yA9h80dcPAJleTJWmajiQKvQQY+O6Xfjss5aHTNPCRWvXBuR531YRmMLtA10cU6AXX3eDkfPcFeii4GP7ZBSdn1pkRoR21dwmjcQzKNoVw6h9UY0tHZNM5e47SJe1/ZEUV0XkP/95tIi1tRQ71vNsVtSDPbI44tBqJE/m1RVOwG/8NypVltMB9FjA8Cfk9F4yeQozwdDZjsanCeDVMu1wIUbd0d9SRc6dk2ATns16D52Ojo7u5O40eHoqeueajS+XEElTyUY9CrLJLQiZInxxA9rHskCgcvRQL5JTMvJF4ibC3roEZuvrOch/Ryc0G2QJVmMbApjmF8WBH4r/N9ANWJkWlrm4Q8tXXJQ2Moj86mcXg6iXefSFPjE9HNeNMIv5/0HHHtMQRNxPohctwWePadi+7vo1AkIiqdlOOendQeedliOop0Po6S5f2YiOYyi0In7XdNrIG6b9cC/ooeQIeih5A9UI7gofR/CM2Djal+NdXzyEkfg7pCd8B5NVVaETb3XWBzAvb5p7OcC/w6pd+Ny0bOclnqe9QP0bjihakwi50PqJ//HVR53EkP3STUcdS/kEEJ6y+j0O2WwGOebe2qrUseGkN5dE5LYwivs2ncn7AaDyP5RKBRzxHXHrejrqxvU+2sgV5FdD/q2qs3wXFWlMkeedlilLN+JP3ftwm6DrsjlCMpZbKB3zkmo/vYXj77voVy1C5Duq7irB+DBiJcgAZPFMEC9CB0PnIe90T32itQlO3/Ucy0Imw3o3DjXiiE68cdzvbt0M24FbgWzU90sPN3UIUBGeVG1OWTZv9+O2gblqw0BtPZxTSOxuPAH4BLCj6HIZJqabZIThbXxEMoYnheg+M2Av4B/A7lyjYNabyaagQaavwK9SfNOwTYByVMtspNGPp7+N/Af9AFwCCUg3A06TZy7aJtGLLSGExnF9M4mKHonYsfoXzekWhS0V5n+2vobQFehqNurc1CnuNAZ39v8vMUFJ35Ukr/R6sQpOV4/OdAPC/k8RDOnu1O1tfE8ih/fhSat7GP+rn0UBnUUfTAvMjEddiWQaHYG1Hf61LgKKrnlVkfXRDXov7yZ4GfxC1oCUhSYVZA74ObiPRKSjtpC+EaqLQ1hvbTuVEDZhoHMwQ99T+NdB2PcmRWoqLxHPRg5+Vy9P8/F/Ic053t7oCM04Dvo+4U77xp7U4jLaei3Ez3MwVN+3BTyOOhsT3bnTyuiaUo3xKU+7UOle5kP5rWYYubw7YZckzeQq9zuBAlI3vZA93Y/4PyIroIP+li2XArzDTgh1SSFWsrzGOowrxKJRG0wznuQeTgpkE7aQtqoM5ADdQxVBqoHVADlYXG0H46T6U6/2Q8GlV1E6ZxGKailJBxzt+vAA8AY4HXnXVz0PQMLvujKOcBEc7Rh95/eBfKfzkTTUlQm3PW7oTR0p009Uz0PsvRzn5hj29kz3Ynr2tiXWTLuTSO/LsOW2+k/6QEpJXD1urcj5xTb57PdajCuLMj74u6igZSXWF2RHMYed+vejjBIdt2Ioy2oGHPd6Fh5W4D5XY/m8aNCauzy5loQMIYNC+RaRzMYPSgNpLq7txfOtvGOn/vgN7oMAgloD+HRtz1RDiHy6POvnsT/UX0rU4ULc9CDoM7Ki/K8UH2bHfyvCYmoDZhJ1qYNCfObVUGA7vRf5TOZ1R76CNQlLHWu59NOrmCrUhYbUFz1cxF0dy9qc4VNI2DiaIzVBqw0VQaMNM4mBEo0l7b07A11bPaz0PpE9uguaA+RRGEKOcANU7DkE3KPst8EYTV8hwUcd6ZSmQtyvFB9mx38rwmhtOEXZxRsRtwY4IqTK/n7+G0QYVJmbDagjVQSYii8znAsagBewkjLH1ouoMVPOt2Rg1Qr2fdx+g+sQ+KYp6GGqgo5xiG5os6Ho2qvSidf6GlCKPluSjFYjTVzlrY4yHYnu1OntfEFlRH/1sSc9gaYxUmO6yByoewOgc1YEYw81DDMxlNhLkXlZnpe2v2nYPmvpuDcoCjnGMDlM8zCU0wfC6aM62lu4Ji0EjLs4CTUS7s++gtBGujyWvDHO+lnj3bnbyuCZAvsyXKZVs9neKXD3PYGmMVJjusgcqHMDo3asCMYBahqU7Gou7601F9/QCNZvbSi94ZWDuVQaNzfBHlqt1J5aHlKTQoZ2Ka/0wLEKTlK2gk8iCUO7XY89k+xPFh7dnu5HFNuJwF7IemCGnZB3obdBCOQ9ENcQDqVpoFnOr8/blnn0uQw3Y1elowGhOk7erohjoL+JHnmFuQzjtihCVI5z40SnM1n+N2ofKCYiMd7kfdzXaPaA3MnskxDUNgDpthGEb2LIPmDDwaOAlNjfROoSUykmD2TI5pGBEbJWoYhpE9o9Acdi+ieaasYWpuzJ7JMQ0jYg6bYRhG9szEcoZbiZmYPZMyE9MwEiaWYRiGYRhGyTGHzTAMwzAMo+SYw2YYhmEYhlFyzGEzDMMwDMMoOf8DGaWzviV4HaUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay - 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay + 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅───(Ay) + 2⋅─────(Ax) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAApCAYAAABwf44kAAAPb0lEQVR4nO2de7QVVR3HPxd1qSlqaSqUBlmgpAlKvlNQwwdaLh+Z71tmZSpc85nPi4+FD9KLimZmQaat1LQsyDQVEcVH4FU0H0ixjAU+IHKZT8TbH9+Zzty5M+fMzJnXOef3WeuuOXdm9px9vr89s39779/e09bZ2YlhGIZhGIZRDvoVnYEmZDNgJvB34Bng4EJz01yYttli+uaL6V0ezBblwOzg0GY9Z6kzANgYFayNgbnAUODdIjPVJJi22WL65ovpXR7MFuXA7OBgPWfpcDLwgvN5KSpYAG8AK4CNishUk2DaZovpmz+u5qZ3sVjZLwdmhwDMOUuHbYHugP0jgTWAf+Wam+bCtM0W0zd/gjQ3vfPHyn45MDsEYM5ZOgQVrg2BXwHHAz15Z6iJMG2zxfTNH7/mpncxWNkvB2aHAMw5i89Q4EHgfWA+sAOwNb0L15rA3cBE4LGc89fImLbZYvrmTy3NTe98sLJfDswOETHnLB5DgCdRodoaOBu4A1ibSuFqA6aiAnhL7jlsXEzbbDF986eW5qZ3PljZLwdmhxhk4ZzNQt2QO2dw7XrZEPgu8spfAd4D3gJmo+7TWnpMAWYA453004EHgNeA151zdgUOBw5CBa4b2CZmPtcFFiMdfx8zbRHUqyvkp61LI2ls+mZPGhr7qaV5mnoH0Wg2cEnbFnmX/SAa0RbNaIcy8FngF8AS4ANgEdAFfNJ70uopf2k/YDiwisqMizJxGHADmhHyEPAqsAlaS+XnwH7OOUFj3JsBe6NuWC8f0btLdjb1O72dwGecfGxX57XyoB5dIV9tXTppHI1N3+ypV2M/UTRPU+8gOmksG7ikaYsiyn4QnTSeLZrRDkWzBRqq3Rj4A/Ai0mQ8sC9yTpdD+iIMAfqjBeSyXJekHRWIUTHTvQx8HXmuRwE/Br4DbIlmhBxC+KJ3Iwh2OrcneKZJUoYB44B7gWdRoS77VOJ6dIX8tHVpNI1N32i0k+y5APVr7Cdvzf0UXcbbKYctirYDNK4tms0OZeB65JiNQ72DZwN7AlejeLxL3RPTds62d7Z/8+1/FBWOsL+HU85HGA8CfwQ+9u1/Dfip83lUSNoeYDUUrOiyB2oFdaeWQ7gOjbv/CN3IoIIdRDPoCvlp6xJVY9M3Ga1Yhv3krbmfODa4D+XXX9G68T89wGXpZzGUNG1RtB0gui1OQ/k9LeQ6Q9Ew2Ky0MxhCM9hhd+Ae4Dg0PPoI8A7wNPmHXn0eGIOGMaf4jl2I8nUMsA6kP6wZ5pzdDdwfcP63gc1Rl2nRrHS2H4Ucn4tujEnAFaj1cL1zrDulPBwJjAauQYvyzXf2b0ewfs2gK+SjrUscjU3f+LRqGfaTp+Z+4trgDGAecAkaalnl7J+EKrWbUAu/DMS1RZF2gHi2mO1sdwq51rXIwTk55TwmoRHscDFwLhqWPR+V7XWBu4Cjgb8gh3dpRt/vZ09nex99Hd63UUN1DLL/A3k5Z5MCzr0SPXynAhelnI+4rA4c63y+N+ScJSgIciLwTdQ9Ow21chakkIf+SJPlKD4BKq2ssBiFZtAVstfWJa7Gpm88WrkM+8lLcz9JbPAMmhl3HGq5TwXOQT09twM/yCarsUlii6LsAPFtMQ8F3e8YcOww4GvIyXs24HieNIIdjgHOA55DzvGOwGBUrici23wDOWlXhlyjA9ggxnd2U32yx1Bn+3LI8QXIORtCys5ZG+qq/YjqhacNdemd6GxPofhF5i5DU3tnIG86jFudPy8XpJSHCcBA1Cpa4exzW1lhwxFeGllXyFZbl3o0Nn1r0+pl2E8emvtJaoPz0Cy5TtS7cCn6vcfQt5VfFEltUYQdIL4tVgJPoaG4gcihAQ1zXYVeZ5RHvmtRdjusjhywD4EjgGVoCBUqvZN/Qs7ZoCrX6QA+F+N7p1HdOVvf2b4VctzdvwH0jTlbRPX4D//frz1phyJv9Dm0wFwQq6FW2Ymoa/Nkaj98g/L0S+fYQwHHpta4np9xyHt/ET2IiuBLqCJ6nspYPujmXA58AVivSvq4ui4iuZ2jUgZdvdSjcVrlNk2Nm0lfSKcMp/lcgPJpXIt6bLAYTef/HBo+ewzFoH0Y4XsXYbbwk9QWjzpb79DmBSgo/yzCK3aXRTR/fVmLPdHM2D8jfwQ0qtdDZQjVbXC8V+U6g1CDMepfe535bnO2PdA35mwh4Y5VEEs8n8OGNF3WAG4DDkWtswkRv6OLvl2Lw5HXOw0VRi/dEa8LcBIwGc0u3Qv4d4y0aTIF2eJUKvEeLvNR0OVwggNBk+haj52jUBZdvSTVOGm5zVLjZtIXkmncRXbPBSinxrWoxwYAb3o+H0/0GfddmC38JLWF65ztiGKjtnSuMQdpWYsumr++rMVXne10z74RaNjwbef/Ac4266FtL65jvX7I8fW85/mds73q+OJqztlawJ3AWOB04CcxrtsVsK8dFbapwMwY1/LSgaavPod+9xsJr1MvR1Ppcr2vynnb0fdGTqprPXauRQfl0NVLUo3rKbdZadxB8+gLyTXuCtjXTv3PBSinxrWoxwag4Z9JaCbepmjdpRMjfndXwL52zBYQ3xaPoZ4Tt+fsOtSrfBLRhvi7Ava10zz1ZRS2cLavOdvBaIFXb3zcKGc7s8p1Okg35uwlZzsk5PgXne3LkO5szTDnbB00lXU08EO0qF3RnIXGzbtRkOWykPOyjndZHwUjrkQBuUHfNwjdDP4YBdO1Nm2oNZJEY9M3GlaGi6ceGwDsj3pVnkdDQrPQyvCT0fBVUUSxRZnsAPXbYgWa1TkSzfTcC90XT2eQ16g00j3R5vn8CWfr+ibznO2WqJw/QsVhCqKDdGPOHnK2Y1BImTeWsz9agPY94HFIzzlzJwN8SCXgEVRQZ6Au2nb0lvmiOR/NAJuLRKrWNdtW5VgtNkM358boRp2Auqm9dKFW6hXoBghiJAoS9c7uaWVdvUTR+CLia2z6CivD4aSlcRp0kcwGALuhnsvF6De/iXS4A1XIB6We22hEtUWZ7AD12cJlNlq49kbkCJ2XbhZj0Yj3xDOoJ/hw4LdUdJ6HHOM70cTFjhrXGZRyvhaintQxqCf0Ws+xCaixeiNa74y2zs7ONL50KGphzUUFz2U6apU9iYLzgpiI1j+JQzsKchxNvG7a41DX7iokTFBw5SKSBaz6GYAqtWec7VykkxvHsQ0qLEuBrXAMEsBawH+dz/2RZ52VrknJU1cvWWl8J6YvNF4ZbifZcwHS1fhk9PDdKmYekqSvxwbbokV+30NO2kLP+U+hZ/nuqIchLu0Ub4s87QD12cLLsVTiy05Ar0qqh3aKry/ztMVGaPh1E+CvqJE5FDU49kUxrkfRt6GZB1vQ+/VNL6AG6mg0nLkLzuub0uo5c9+XNcezrx+6sd3j/ndqgcatO1PKQxQGO9vVCPeaHyadwraUyuJ2b6Du6o3Q+8mgEjA6nvCbGBRUvgB1xX6ZylRraE1dvWSlsekrrAz3JqrG21Lfwppx0ie1wXK0DEIPsA+9HTPQq3ruR0N0YYuiZkVatsjTDpDcFk/4jv/T2T4F3Bzj+9OmzPfEJPQMGxtw7jIUU3YVes6s4+wfjRqFF6NJDUWwEDV6LkKO4v7oGXsN6j37f89kWj1nt6FuxLFoqKIVuAmtB3SE83+1wjISDQ8Noxzj8mXGr2tUTONomL7Z8yTwO+DygtIbolHtcA+qR3ZCDlozkLYtHka9gBfWSDcY+AfwGxTD1zCk8W7NEWgK/CvEX6SxkfF78l8heKbqhiie5nisUotCkhaWaRwd0zddhqJ3EL6P4m13QAt0dqNXHgWtaXdhxPSgleE/oHdg8mTU8/Lp9H9Ow1JLx1q2qJV+MXpjgpfhyDbDUvwdRwIHokkAjeqYZWmLNVBs++5o/bceese5+3EnXRQ5oSIRSZ2zfmjI4RY0froKva3ev55Ls5C0sKyJ3h04Eelk9CaNisk0DieNCsf0DWcIatHPR7qejeJa1kYaT0Fxe+7fZDS9/9aI6UHxj/OpBIWfDnwLDYl41yVrZaLoWM0WUdLPQQ1wL1ejnuh6h8g2d77zJhQb9jxwZp3XLIqsbbEKxUeCYrUGUAmRCKJhnbOkMWfDkCOyDL0G4RIUNNyMuIVlKvA9KoGF/sLyBCosr6LKrc1J8yByYo3e1NIVVDGdhSqmE6hUTLugisk0DieKvrUqHNO3OlNQGMd45/9XgAeA/YDXnX3uopfnoHcKjnLOi5q+x0k7HcWrnIOWAfDHiLUyUe0QZov7I6Sfg5Z7cTkE9UIfmkL+90WNn/+gIPEOoi8AXDbysMVAJ/1T1O7Jd52z7gS/pVCSOmfPkc6QaCMQpbAFFZbd0FTeZ6lMRz+G6l2wrUQaFdOumMZhRNG3VoVj+oazGbA3fSczfETfiuBcpPMoKi89jpP+PvRsuQQ4gPC3sLQicXSEvraImv5xtEDyp1Cw/xUoqHt5HXl3+Znz1+jkZYsRqDMoSojFARHOKSVpLkLbjNRTWGbTOg5sXNKqmEzjYNKqcEzfcEagXnP/iMH29F4V/nzUc7kHlR6zOOlBDZJtkS3KvDJ7EcTRMcgWUdPPReErI9G6WStRA8iokJcthtOAw5RxsQdvdaoVlm7P/8NpgcKSIlF1BauYkhBVX2+FcypW4cShBy0xsKZn3x6o4u52/r8ADcePordjFjU9qOzfhXoY7gEuTSHvzURUHcNsETX9B+gZfyDqwT8d3S9GhbxssQ3qzW9qzDmrjhWWbLCKKVuswsmeuUi/SWhhybFU3nLQjYZsxqEYyXfQqvGbogVIo6QHTYSZgdYam4YqtX2ovNjZiKZjNVtESe8yB60ROAfFWhu9ycsW/dD6cAOJ9+7LhsKcs+pYYckGq5iyxSqc7FmClhbZDw21n4HK6buoN+BMtATJo1QW810K7Bwh/QI01HwvsonbKHkWTZKZmOkvayxq6dhGdVvUSu+lG70P0T/D2RB52eJc4GA027xpG+xpLULbzByFHob90TDRLOA05/+PPedcjpyzG1BlZ1Snmq4boJt3FvB9T5rbkca7YdQiSrkFvaLlZtRL+XzOeTSMRuJ+FLhuz3cjc8w5M4zWxiocwwinH1pT8XjgFLSM1IpCc2S0BDZb0zBaD2+FszVaZ8gwjL7sjtb5ewktNWOOmZEL5pwZRuthFY5hRGMmFpttFIA5Z4bReszEKhzDMIzSYg9owzAMwzCMEmHOmWEYhmEYRokw58wwDMMwDKNEmHNmGIZhGIZRIsw5MwzDMAzDKBH/A9YnlaLwpoacAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jz + 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay + 2 \\frac{d^{2}}{d zd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz + 2⋅───(Az) - 2⋅───(Az) - 2⋅───(Az) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p4 = [φ(t, x, y, z), Ax(t, x, y, z), Ay(t, x, y, z), Az(t, x, y, z)]\n", "φAxyz = Q(p4)\n", "ρJxyz = Q([ρ, Jx, Jy, Jz])\n", "txyz = [t, x, y, z]\n", "\n", "for p in p4:\n", " display(euler_equations(\n", " add(\n", " product(vector_q(Dq(φAxyz, txyz)), vector_q(Dq(φAxyz, txyz, reverse=True))),\n", " product(φAxyz, ρJxyz)).t, p)[0].subs(simpler))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Maxwell source equations are derived in under 10 lines. The first 4 lines define the players: the EM potential and current density as space-time numbers, and variables needed for the Euler-Lagrange equations. We loop through the 4 potentials to apply the Euler-Lagrage equations. It is hope the gentle reader can spot both Gauss's and Ampere's law.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A specific technical choice was made in the process. Notice the \".t\" which plucks out the first term of the space-time number expression for both the fields and the coupling terms. For the sake of logical completeness, repeat the exercise for the first spacial component, \".x\":" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAAyCAYAAABvYrMGAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAQbElEQVR4Ae2d7bXUthaGB9YpgJAOSAe5lwpy0kG4VEDSAVn84x+LdJBQQSAdQCqApIPQAazTAfd9dCRH9sge2Zb8MbO1lkcafWxJ7ytpS7Js3/ny5cvBzHQEnj9/fk+pn3kJD7z9RP4306VayikIGBdTUFs+jfG0POalcjTuSiF5LOfq2Mt8RiLwUg30p5BG7l/l/kvXN8HP7MUQMC4Wg3pWRsbTLPhWTWzcVYL/biW5lyT2Ryng66jCL+V+IL9vIz9zLoOAcbEMznNzMZ7mIrheeuOuEvamjOcDy6r4w3wxJqEAAsZFARAXEGE8LQBypSyMu0rA3rF7xvnI+tXuK6Xg3vBr/adhtoz8WBn/INu2qVvIlP1jXJTFs5Y046kWsvXlGnf1MY5zsHvGMRon3GqcfyvKf2Rz6u1tN7pvvD8Qpxtm/8siYFyUxbOWNOOpFrL15Rp39TGOc7Bt6hiNDLcaaLg//C6OLn9Wy6yKUdZ2kjoGp5LbuKgEbGGxxlNhQBcUZ9wtB7atjMdj/b2SfIwVrtwo4p9lE3bw/7E/8t9MNQSMi2rQFhVsPBWFc1Fhxt1CcJsyHg80K+NmVewVL48zoYzDCWruJf88XrSlGImAcTESsJWiG08rAV8gW+OuAIg5Iq5yIl1qHK9o2XpmhftJF0oYhftCVzA8U8yLP7Abo7RHh7uaQHOMRsC4GA3ZKgmMp1VgL5KpcVcExslCTBn3QKeGyYzwjS7uAbvtZtnh0Fa8Mv6qR4R5F0LAuCgEZGUxxlNlgCuKN+4qgpsp2g5wJYBSw2SliyJm6zm+74v7b/nZAa0EbjW8jIsaqJaXaTyVx3QpicbdUkgP52PKOI0PW9P31Eh/6wS37p90wuxvHQSMizq4lpZqPJVGdDl5xt1yWPfmZMo4Dc3/5N1sRRPFzx45NR22qvE2Ux8B46I+xiVyMJ5KoLiODONuHdxbuZoybsHRKF22qbtKlwaLUm4p6U5y+1sQAT8BMi4KYlpDlPFUA9VlZBp3y+Cck4sp436U4nvFxOJ5O97AdVAD5nWXrJLNLIOAcbEMznNzMZ7mIrheeuNuPexdzqaMOwRIyXI4i9Vvo2xRvvrPI03hgxDfy6/beBVspiQCxkVJNOvJMp7qYVtbsnFXG+F8+fahiARWaqBsjb7S9V7X17p+14WS5qADfu8Ux62S5V7EKD8mB29kX9R7r42LRZrX7Ey2yNNQpS61P6UwMe5SqCzv1/ucsQhC8aAAWBFisxLksZ5HsjdrfCcLb7/6rwr6WRePKGUrT8VF8abqmfJbCgsetQpv+Foqz1n5GBez4CuauAQXQwXaaJ8ZKvJu+pNxd0TjbrjrllxcolcxvESKL/u9lJ/bZT25MvaJnyoRL7/IVmiKv7hR+Zg0/Cqb+7vOROVna3mXh69UbrbJaYAHue+4im38R+U0LjbC0blyMRVe4bGb/mTctVneE3ftkruxm7c0vlAd/iBMNjuw+LnbnnfxPGF4tvZGCTetiH0dmHW0XkOpcrNKZqXrlJmPtzeLyUUgECW3B2NcFGRJ7fha148TRZ4rFxPhcIcxF+1PM/gz7tos73EsPPi+y7srXLujSnKjl/jPtw0OOcqYrdG9rCiZOPyjSjLjiA3lB4i9KLKm7CoznZErHBjr1q2JuzGHcVGWEHifyv3ZcTEV2hX701T+jDtP9orcTW1ucTpucaYWtO/lz0T73qAyVgQaAqb7zO2t7/Z+Ubqtzxt2ijh1MOuIWeav8Gfy8Ek2iph7DJi9TCiMi1u+tvB7VlxMBXSn/cm4E+E75S5uqujSz7GHd4dF1vVVIjD2CgeWXseewS2AUG5h6+yh3E90oSwe68K8V5xmWX7rVe9XeYXydjNxB58UnpqZdONu6T8Hz8K2eyDtfqqAimdcpIAp52dclMNyLUlZHEZ9iQM2f+l/81pcH/ZKdt9YU7RuA/nsdUybik8Wd0G4cAOfcGvykf5z+BjdxCq04TPEr2krv5xF4P1TyhhtPrTS5CSYUxayOeTlHgeSG+DYB2d7dTFlrLyOjMoBKZAQTlgfxdmih8oN9vGORFDGDBApY1ykUCngZ1wUAHFlESM5fKb4jGEc9GJMiwdv3sSH/2pG5drlmDYVsJHcHRQf5Qdv6CAeTWVsZCH2QPbgJErhpGHsHWNOPWV03wu7GRB6r1cZ+wqhxOKG2MhSOCtilG0wZEQjZXWMoQBxuPNc4YfZ0R8q7y8r5D0nS2ZzYVWMnEAknLSMcdGCo8Yf46IGqsvKzOJQfQlFx308DIeFuluL+LF1vKbZ65g2FbMs7iLh6J7vxGUYMw9yo4uCboqitp2KF4+57cC6/77uVcbK172LWXZY6neL8kEFD6s1wngZRfN5QYWdmoHcU/w/dWHnGkjJ3mpWXGY5rOyTZZH/l9yMa8RT/snHlOTPLgOzOMofTJhdpfAyLgJKE+w+HhC1Ahd9M3PHv8qTGixOzcxbqEjGpvtFq7CZf1SnZF8iucLG9CfGizDGMAa+6BSBVVPXr4mitFX58/I3O6Y1QIxwqE6luHO5Sl6jl+RmvHymi0eKbkYUq2TU7oQulh3G9U9DypgZ4EEVSM4C5R8abBCcargh7Mj2wFR7m5Tks3K/L9vV46gA8lBYbyNIxV/CT2VyyjZVbvkxeUitjI2LCuSsxEVK2R5UFnadmKDN2uFR+l32i6n0qr6j+pPiuwFbNkqXtM3OoPy+9X7JMZEyKk41/iTbuANkGWGRHAtvQ29/FYexku8IrHqLUvnzaDCFcm0RR2SC38crX2AePP6tU2gaY3eQj2T861S60HCb+8Pyc5nIvvk35jIu5cnA9Y3sZkUst1NisptZ0zKlGZ1Lc+83kZKyh5lUItg1UuMiicwkT+NiEmybSjSVQ8aOZqfP14i+tco7F3Y+pk1tEFO5OwgvuGpNXuXH462D+kjhfTsbQ3XI2ZliAne0kJJfGM/fXekPigvFGR6dOahAwS85o1A48dm+BiwyYTZII40VnTsEIf9FjcrA7PWh7G7ZqVMzy120UJmZqcw0ICZGfYaG1CJUaYyLPrRm+BsXM8DbSNIpHEZFp5/F4xlBq9wvVj12O6ZFeI5yzuFOaRnrD7K74z2HupoFWqpASpPc2UjFHenn9GUiTXN7F2XM6peTg277SzaDO4X+Re6+7RiUBhfpiP9ZV2PkR9j7xmMhh/KlA1FpPuTADCc21/KbtcUXCxtyKx8w4T4FJijPJ/K/ufU6/lWYK7vsr45DGx+HM3F1hYHCuGjgOXYIJ+NiI/3imJ16PvQRSefDKmP7UyhUaxdKckI/qzVYh3xbdqiHPFcd01qFqvwn1HkKd0rDxAWOWK1iv9XFiWoU9KAiVng1o7K4nWfZbJu7HWTZjE3c3v2OjNmmhmQGdw45YB7q4qBUnyImDmHMOmigB8X9SddbXShAVnaf5W62rImzkAF4OiH3Vroma8u9m2ji/9b2SoTL0WNJCoMQJhABS/DrngSkIdGwXBzZDDLwxurfuBAIA8a4uB2QttAvBmgqE1SgP4WC0Ld4nphTuOwahr47NC6GtCXtrYxpJeuUlFWIu8eSE847MW6ysGRihY5aUgek6sgqmPEIHUubwmasd+U6+aEIRb5II4CYYUEkg9hr/c+eESsuhwuaD1PoPzL+0bX5j22ojJszxoWb8DKwtO6BrUHUHC76yltDZl9eU/1VRpQyu2uTDp0q3er81cK5ltypXO013dVeC1673GpgzFZQnihWZqdjDIr7w5gEFrcfAePCYcMtDq5VzUwukmWvITOZUaanytNSvPrP7hW7bU8yRaSirc5fLZxryU2BeM5+powH2FUjC9vCo7amlK57cADlHD+/OJCrBaUQuHQuVP9RbTCFYSm/qVwM5V9D5lB+J8JYxcZnTtgh457f5FtvW+GvFs615J7g6ayCTRkP08m9B5To5BWJ0rLdTeeetL01XLyLCjUutkP3bC4SVakhM5FNlhf3i3lHAedouFfMN9I3MxnKqkF/pFo415LbX5MzCzFlPEwoK+PJnVAdmHvFbHmx3T1ZoQ8X8WJCjYvtUD2Li55q1JDZk9Wwt/rq5BXwsORNhNbCuZbcTYC2RCGulshkD3lEipOTd5x0Qwmzqn2hyxnFCfeOmC0Pfs3Fy+PRL2aMB/8fOzyS5GTazzECHismMb1chFSKC0ecRse416X69By2cbcL/H/j4hajUb8eu0EuFCe7X5B5jkwfL8jlLydPn+higvtYF2bRr8LdZrmf31ycqZHinuxHoea5chXP+AugZdimjG8bIrM6BnRWsE5Zyg6HtuKVcdbXXHxj5Z4TCoBGjuG+MdtfZgYQEF65XBwUl87O/Tyw5llCHhvg4B2njh/JJg6Dt3EBGCONsMvlIqtfkP0ImURvHktTOraM4RoFTL+CUyYJ57yKVfWmmTE4K+7JfhRKMUau0hh/AbgM++KVsW+IKGI6eLxqxd28Dk9hKNX3HlNWu5+9O1j4BcXNs8I0cOzGSAYK2UwPArlcRMnvy919JpsBmhVUMMZFQGKEncvFmH6RK5NiKi6nl+EymBs5OHsRuIX7ODzEu3h7DM4erJx+BCeMaSfHSmQqrvHnwc21Ll4ZCyg6NO8s7Z6AZlUQz7rj09C8NaXZvpYbQ3znJ1lDb/1xke0niUAuFy6xcG4mT3IzUDzT1fo6i3GRxDnHM5eL7H6hTHNlUr5ZXyLLqeAZxxmD8yGnH3msxsg1/kY2MFPGt68jCytaB58f2NneDFvVNFhm5tgoXQb+RnnLj1Uzfi05+m9mHAJMcloYCltwbXHRFak4hK/+dZZuuXb+P4sLYT+mX2TJBDfJdW8lijBMTYCjYHNGCGTjHKUB81P9KFuu8Rcjm+e+mxftPGOpwTDQczVK19eURkfjbCkGH8a9yGb72vuhoFf5movPf/fWRC7gCOyvZTfvHfeydo/JWhXw+BXtFxNlOgiUNkyAm50q5HmZa8G0yXyn4uwx7u1HU+UCkpdNezL+BlrN1UDYJQU1252+0tz/dTNzNSTuU6F8Qxxmj8Hto6/zNZeQ+ZnZKWyTXHhuDrKbXQqPBQd93AGuM8Nm6epkc6GC5faLkzIli/MY3JvkABATYs5abOKrcCrHXsxJnIWtiyObMe4gO6cfnZQrUcbfhFZy6SvjG2FGZ2cgccY3TLadP3gv3jEdN8DYTQN2KzPF7a6ufXKzchAQjqO4UHw4YpDmc5l8pOSpLgZv3gHevZ+fUwSL4xEQhqO48MkG+8VImaFP8cEZVlQM7o2RH+HhMGXjbw6nUEdxJyyz+pHxV7912cr4dgXF11meCm4ej/ldFytjBnb8eIQiNlv5mktcpnNxs5rN5eKx+IGng2xm9qyGUQhb+DqLirF7M4YLKpvTL3JlMkFmlYbShd+tfBWO4uzB5OJMXcb0o1y5xt+EVmJfbZoAWpxEAwUnDK9l2+suY2DMfdEIWL+4aPqt8hMQuOht6rF4McDoap4dlpstNJ6ns23RsWBa/LNBwPrF2VBpFVkRAVPG48BnO5Rt7GDYGp31NZcgyGxDYMcIWL/YMXlW9G0gYNvUI3jQCoBB574uVsS8n/qN/Lg/YsYQuFgErF9cLPVW8YII/B/sTiFTZnylvAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle Jx - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az = 0$" ], "text/plain": [ " 2 2 2 2 \n", " d d d d \n", "Jx - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) = 0\n", " 2 2 dy dx dz dx \n", " dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAApCAYAAAAmnx6jAAALxUlEQVR4nO2de7RUVR3HPxewSEIoDBXDIAsIIUAoNA15FAs1s5Wa4gNaq3JpvC5iaWI81BaFivi4FdJDLWy1socaSBoKiV6TwIuWKEgiscAKIiMkQ7r98T3HOXNmzsw5c87Mmcfvs9asc+/MOfvu+52992/v3/7tvZvmzZuHYRiGYRSjQ9oZqAJ6A6uB54GNwGdTzU1tYJrFxzRMF9O/BJpshMExQE9UaHoC64H+wOtpZqrKMc3iYxqmi+lfAo06wpgKbHJ+3oUKDcDfgL3AkWlkqsoxzeJjGqaL6R+TRjUYQ4C2PO+PAA4D/lLR3NQGpll8TMN0Mf1jYgYjQw/gHuALQHulM1QDmGbxMQ3TxfSPSSMYjP7Ao8B/gOeAjwKDyC44bwd+CSwAnqxw/qoR0yw+pmG6mP5loN4NRj/gaVRgBgFXAz8D3kGm4DQBd6HC9aOK57D6MM3iYxqmi+lfJqrdYPQAvoh6AS8BB4DXgLVoCFks/y3ACmCG8/xyYBXwKvBX555TgPOBz6DC1AYMTuw/qDymWXTiauYnTQ3fCexA7pVfJZBeJTD90+e9wA+AncAbwDZgMfAu702dKp2riJwHfAdFNDwGbAeOQjHT3wNOd+7J53vsDXwCDUW9vEn2sHQt1W84o2CaRSeOZn7S1nAecCzK64llSL8cmP7pcjxyyfUE7gdeQPrNACYg47oHqt9gbAY+jXoI//O8fw0acp6DCtXP8zw7DDhEJnTOZTjwcOI5rR5Ms+jE0cxPmhoOBKYDK9E6gyEoVHR3mf9uXEz/dPk2MhbTgds97y8CZgLfAC6Dwhb2VLQS8l/IOr8CXFvkmaR5FHiQ7EIEGlp+1/l5dMCz7UBHNLHlchqy+m2J5VCMAh4AJqNh7ePAfuAZ4OSE/1YxTLPoxNHMTyU19HMH8s1fATzrvDcsz32zUD5nBaTTH7klfpd0BgNoNP0BnkB5DXqtKWtOM7wfGI9cUC2+z+aiOnkJ0AWCG/8bUGHpjr6wpcARwPXA7IQzXCoHneubAZ+vR4X+JjTkOhOFz0GyBed6ZFiHO+nejyrcL4ChwG9Qb6MaMM2iU0wzP5XS0M+FwBjUW9yEJnwhv1tkrXM9KSCt21GjOzXJDJZIPeoPmq+Zn+e13fn8sbLlNJuxzvVhcg32PmTYDscpK/lcUjORUViIogtcv+ES1Pu7Ag1R/IlXkk7AJOfnlQH37EQTZguAz6Eh6t2oV7UloXxcgkZdf0SFZSTQFw2lFwBdgbOBi4EbE/qbpWKaRSeMZn4qoaGfrkirPciHDpkebr4GawOaWB6Z57PzgE8Ct3nSSIt61R9k0PzcCByHoreuC3iuGXXkw9JG4cn3/s51c8DnW9AIpB+wym8weqHeXyvwNbInmdrQZMgANLH0Svg8J843UbjcCtQbDWKZ8/IyJ6E8dEKF8r/AROSnPM35zO3B/Ro1fn0S+ptxMM2iE1YzP+XUMB/zUd2dira4gEwPN59L5CCwDrkFe6FGFuR2WIS2yihnfsNSr/r7aULuoMud6zSCJ/ibgfdFyNvdFDYY3ZzrawGfu+93h1yX1EQyhSbfCGK/cz0UkPg2Cvvl/K8fB/0XBZiOegsvoN5qWoxF0RAPod4yyMXSTmbo62p4oEA62zDNTLPSOQE1MH8i4+8HGYE9wAeQO9nPE87V65aag8IrryK4AXHZRnm/g3rX36UjGlFcjrw6UykcDdYHGZiwr89H+m9yaXKu7ZDrkjobVdgVAQ8fi4zGzoDPt6KVlWEJSieIKcCtaEviccA/Ij6fJB93rss97w1DQ7h9zu+uH77QUNg0M83i0ILq8UxyO3LPocnioeROYLsGYySaOxrgpNGKeqXFKOd30Aj6g/avuhc4F7my5pcpj4VwOwbdAj4/wnuf12B0QrG3u8m/xe9HgKORyyBo/mJclJxGpBm4BfVMx6Fhc5oc71xfda590SIXr691tHNdXSAd08w0K5WLybj0CoWMnkhug/Uk6jW6I4w7UG93CuHWO5TrO2imMfTvDNyHJuWvBG4O+TebSXYO40Xn2i/g8w86182QbTBOQKFob0OuKr9RcEPw7gyXz0S5Cvkz29CEXL645kpuHNbk+flw5zrcuW5wrgOQC+ZxMl9KJQmjGVRGtybf77WsWbVsUNcNTZIeRFtb5MtXH9To5vOj70XRPCNQhM84tHjumTLkNSzVVGaLEUf/LiikfAzwZaR7WJpJdg7DjcYaT2673xUt2jsAPAXZBsOtvN3R6j6vW2oKWka/EsVLV5Kvo4iB9eifChqe+hulUumNCkBPVBjmoyG7n41ozud84KdkoiE2oIJyHwoFbE4oX1EIqxkko1sjaZZUOYvLYjTiX4ga2nyMQJPbQZE6a9FisyWocb422SxGotJlNi6LKU3/bqhtHYnmF+7JfawgfSLeX4ytaHQ0HrXz3oV785FxW4Izf+09ca8FWbsH0dL6e4G/I7/zKcAfnET3UjkmowmhQ+gfyTcRt825JynCnsR1JBo2HwX8FjWa/dEmZxOQf/Ii8jec5cQ0i05Smk1Fle5DMfISJo3ByMjucu7bH3BfZ+Dfzs9dyQ0kmERmvuJLaBuONEiyzMb9Dsqt/3LgDLSC/aGA5xagtSSVwr81yCZk0MYgV9THyLM1yHAU7ngBsvaTUAV/GfU8bibaJFcS9HWuHQnuda4h2Yq8y3lB9klc23337Ub+9kUoPLGL8/4YVCiuR5N2lSYpzSC8bqaZGEL8xWH+NG5C+p/pec+daJ1BcGMFqq9bkKvvw8DvfZ+/7FzXAd8vOcfxSbLMxv0Oyqm/G8oMmi/273cFqj/zomc7FlvRaOg61HE7A9Xn29Ao463RnjvC6IiiVDaRcU3VE0vRLpITIz43ArlaBlLYb9oX+DPwE+QPrhdK0a2RNXsa7Xf0rQTTWIMCAObGyll+HkAN4UmoMasH4n4HldS/5nDXYQxEe8VvKHBvLVNKr6MH4U/icie10pwwLAdRdWskzYod0LMD7YrgZShyNQwMkcZhaMQ/Cq2PaCezGCwJLgTOQhOutWosin0H7k4V/tfcEM+XW/+axDUY7qiiViuvlyQqctSTuGq98YP4la+RNAtzQE8rCkX3cgsatT0fIo1DaANQkD/5GDLujFI5zvk7S4EfosVmX42ZZlqE+Q5akG7u61YU0r0sxPPl0L/mcecw/OGNtYpbCO4CLiUzoRqlIjcR/SQut/FrK3RTFRNGtxayfchXo2inZTSeZt4DekCH9KxC5za4B/S0oiASl3PQiO3cCGn0Qq7idSQTSjoBGfR/osnNZvKvuaoFwui3j8yC0GvQ3lKjnXsfCfF80vrXPK7BmOa8ap0kKrJ7Etez6DQu0NYEhYajn4qZ77SJW/lOpXE0C3tAz1MoUOTdaGJ0IZpU3BMhjWEo8iypxupO0llHlTRh9XOZjer8aBT1k5b+NU+1H6AUhSQqMtTfaXLFiFv5oLE0G0a4A3rWIx/4CBSHf5DMeQNh0xhKbbrsyk1Y/UARn5eiFdkvRXx+KKZ/FvVUyQsVgjbP796KPJPsityIhNUNVPkuQ5UvaDvkeqedcAf0vIEam7PQiOxKMmc7hE1jMOlvMV6NhNVvDlpfMpqMsYjyvOnvo54MRhIVuRGJW/kajSgH9LSidSytaA+2qGl0QPH7vYi2f1C9E0a/2WjH2wuQJ+Fo59U55PNg+udQTwYjiYrciMStfI2Ge0DP6Wj3g6+g1dKvk7vDbhvam8cflRc2jdnoLOsd6NAyQxTTrwlFf/VAu/Lu8rxODvG8i+nvw7s1SD1wEZlT2zaiHSJnOb97N9WajFa2DkGhhY1OId3aUVRNvj39x1K5oyRrkUeQ625K2hkxjCSoN4MRFqvIRrnoALwH9WCnobU9ldx/zTDKRj1FSRXDW5EHobBQw0iaUWg9yosoZNuMhVE3NJLBsIpsVILV1NfcoGG8RSMZjNVYRTYMwygZa0ANwzCMUJjBMAzDMEJhBsMwDMMIhRkMwzAMIxRmMAzDMIxQ/B9AAPM10QSPigAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ - 2 \\frac{d^{2}}{d y^{2}} φ - 2 \\frac{d^{2}}{d z^{2}} φ - 2 \\frac{d^{2}}{d yd t} Ay - 2 \\frac{d^{2}}{d zd t} Az = 0$" ], "text/plain": [ " 2 2 2 2 \n", " d d d d \n", "ρ - 2⋅───(φ) - 2⋅───(φ) - 2⋅─────(Ay) - 2⋅─────(Az) = 0\n", " 2 2 dy dt dz dt \n", " dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAAnCAYAAACyj6sXAAALyUlEQVR4nO2df7QVVRXHP+/xWJWAmJYlhYAWP0wSkMRKCbAIRdNSJEiCpNWKH8EzMX/jA3VhQPoAyYxMyKJVUqYBKS7kN88k6KEgilAsZCEJRCxL5FevP74z3Xn3zcydmTv3ztx3z2etu+YxM/fMuWefvc/Z++w5VNTU1GAwGAyG/KhMugIlRntgJfAqsBn4WqK1KU+MDNKBkUMWVUlXoMQ4AUxEnedMYCPwLPBukpUqM4wM0oGRQxZmZpqb8cA26++3UOcBeBs4BHwoiUqVGUYG6cDIwQdjTHNzAVDvcr430BJ4s6i1KU+MDNKBkYMPxpjmxq0DnQH8AhgNNBS7QmWIkUE6MHLwwRjTxnQBXgDeA14BLgLOp3EHeh/wFDANWF/k+pUDRgbpwMghJMaYZugMvIQ6zvnAbcCTwAfIdKAKYD7qZE8UvYbNHyODdGDkEIFcxnQ1mrp/tgh1CcsZwLfRyLgDOAIcBtYilyPsQDEXWIpWKHcAS4DlwD7gH9Y9nweGAtegTlUPdI/8CxrTGtiD2vsPMZWZBCPQb2hA8glDkjIoxfaPWwdsktaFtPFx4OfAXuAosAuoBT7ovMkvNaoS6AGcJLNqlyaGAI+gVcUVwG7gIyjf7WfA5dY9QeI47YEvIlfGyQkauzVrKdxsvgb4GKpvrwI9o9C0B+YA/0bGKex3k5RBDaXX/nHqgE3Sckgb56IQxpnA08BrqG0mAoPQoHIQ/BujM9AGJeWmMXdsO/AVNGp8A7gduBHoilYVryV4InFP3AeNC3FfvYyb84AJKE/vZdShi5VmMgopW788y6kAHkcd6ycRvp+kDJJsf4gugzh1wCZpXUgbP0aGdAKahd8GDAAeQnHl++0b/YzphdbxL1nn15Fx49w+q/KtfUBeAP4I/Dfr/D4yytwvYFkNQAsUULf5Apqh1EeuYXAeRsbo+0iZQZ06m2WortkKYsevGoAHClPFnExAnexbwH8ifD9JGQRt/5tRPW/2KKcLcgNXx11BD+LUAZukdaEv8AwwEoUN1qD+9FeKH248BxiI3Pq5WdfuQfUaAbSCaMb0KWCKy2e3dX1FtHrHynHreCLg/RuREsxE0/rBKN0DCt+BhgP90Qi4DQX9wd3VvAUpzn2ow9vMRJ1vHho5i003ZMRnEd2QJCWDMO2/1jpe7FHWHCSX8XFWMCJhdcAmSV24F72ias+Cn0YD1O9RyPE54KwC18HJAOu4jKYD1jtoYnkKVn/wi5l6GdOZLvfOAM5Gs6OpwetaEKqAb1p/PxvwO3tRwH4acD1ycRagGcgbcVfQQRvUdgdRzA4yMyM3Zd6MVk5HohFxPnAHmlH9Fvhu4arqSZVVp91WXaKShAzCtv8mtMjTx+XaEOBLwGxHGUkRRQdsktKFEcBdwBY0uPUBOqE+NQ3J6mrgBiQzN6qB00I8sx7/xcYu1nG7x/U30My1M7Dcy5hWIDfnBP4dowJNf8dYx++RfOLuAyidYykayYLyK+vjZHJclfJgCtAOzWQOWefsmZGbmwnqcEOR8rdGMZvnUGfMHj2LwWRU10uQocmHYssgbPsfBzYgV7QdMjwgN+9B9FploftMEKLqgE2x5VCFDOYxYBhwAIUWIOMNLEbGtKNPOdVAhxDPXYC/MW1rHQ97XLfPnwbebn4XNBJsQUm7brRAM6MxwHTUIf0M6S78Y63Zn1/6lOXFBDSCvoaMS5r5FBp8ttJ4wWYvmil9AjjV5Xt7UFpGB+RWrkcx1GMBnrmLpu38uHVthcu1+TnKuwjNHH4E1AV4fpqI2v7rrKPT1Z+MFoFuxVvxbHYRrwyyKSUdsBmAMin+hGwOyDNuIBNasCcKfgN2RzTBC/oZlWe9K6xjA3i7+V4uvk1LYCFwHZohTQnw4J14G2Y39ua+pRHjUMzuVeAy4J8hv19s5qL2vwmtnjp5BS0c9MA9Brnf8fdogmdb1NLUDeqBRvwFSNGd1PuUZbv324G7Az4/TURtf9uY9kGxvK5WGXWoDXNRS3wyyKbUdMDmUuu4xHGuJ3Kj37H+bcdKCxlqyMYeGNt6XD/VeV8UY/p+YBEKTE9Cs5IgXBbwvihUo1SFLdZz3i7gs+LgBjJuzDKf+3rRVJmHobj1PuCjKN9tTMDn1rqcG4UUeT4K/gelNYoVgfcgOc/6zEIySgv5tP96NBOxZ6YPIy9tHMFCXLUu50YRTQZOqiktHXByrnXcZx07oYR4Z7y3n3Vc6VNONfHGTF+3jp09rn/SOm6H8Ma0FUpb6A+MRQnDSXMrihHVowWAAy73JB3HtalAo9kMFH97Ave6dUQKkR23uwLNXrYi12g1egNmFnLrislR4DGPa71Q3deiDllHemTQlujtD4qtbkM7JQ237nsEpe4kRRAdgPTIwKYi69+nWEfb/myyjl1Rf19DxsC5UU28MVM7M2kgCok61yTaoIT9I8CL4G5M7cWnY2SC8aBOuBS5N6PIpEskyd0oe2Aj+sFebk220JJkKppRTkdK4EZvtNDhXFG+BHkEe9Bv3Y9+/5NIka4pTHU9OYL366I1qA8tQG/iAPymCHUKQi3R2t/JWpTo/ygyXHfFW8VQBNUBSJceONmMPK6hqJ/Y7b4JDWyL0GJ4dY5yOsZcr53IcxmIPI85jmtT0OTyUay8ajdjar/5tJHGixoLgc+hDRDOIZNK4mQamrEUg5GoE51EI9YEl3t2kTuAPx41VLc86xOknO7WPW/in0K2Bf2ubmhzic5oNfMwmnm8Zd23CHkPV6O405ro1U+UOGRQyPbPXvRYB3wHhTpuIrnYZFw6AMWTgRuPoXb8KvA8egMNlOo3CK3RDCMzUy0mY1FoZzbyQrahCWV/5N7fad/oZkztd3Kdq7OVKB3Evp793i4oRlOTR6XD0sk6tsB7xFpF7o7kteFtWLLLmYk61WDHOXvRYyL+bwm9hwLtXYFPo+TlBuDLaLR0cjvqgDPwTiZPO3HIoJDt/+es63+3jhvwDnUUg7h0AAojg6AcQDHRB5GdaWWd748Wpe5Fi2pJsBN5KlORYb8CTWZmo9np/wfSCpf/nXQhGgUGI7e+ufMS8DvghzGXswoFy+/Js9xyIA4ZFLP9n0H6cTEyqM2BQsggCp2AvwG/RjHpkiE7z7QnSnfaQbRk37STa8PbPehtIic9UOjivIDltEThkb4o/7CBxrHncieXDIag9nYuJMxCM8UPByij0O0/HLgKLTqVqiGNQw/ikKMb9qJfkgt6kai0PjVoZXM9ir/cSNPcu1InyIa3dcBnsr73EErvsd2MXOWcRItFoNjKWWRCJOVOEBkssq7bizqTgK8jF2t/gDIK0f5nW8+ZhxLstwI/yLPMpIhDD+KQoxcla0yr0EgzGcUtFqNNNNK4f2m+ODe8Bc2+l6M9H+0Nb+tQwNnmWhQHui5kOe1QsvEG0peOkiRB2q4BvVW1BMWr7kBpMTtDlBF3+w9Ci6v/QvHratK5LWUQ4tCDOOTohW1M64P/pHRQhVYum/smr0E3vH0RvYRwOlqgmI4CzwdDltMTDUjGkGYI2nagdJQNaGC/kky+c1Lt/1PrU+rEoQdxyNGPKwPck0qauxG1CbrhrZ0O1hulahyn8T6GQcvpQQm6KQUmzKbDA9BMqJLGb/KY9s+POPQgDjk2S8rFmAbd8PYoUsKrkFsyicy+kGHK6U7y27CljaBtdwF6530sWjW/33HNtH9+xKEHccixWVIuxjTMhrd1KPG4DsWQo5RTifIT2xHuXeHmTJC264BicTPQ21OTUW7tpSHKANP+XsShB3HIsVlSLsbU3vD2chS3uQUJ+V2a7kJTj97BzU4NCVPOnWhbvD2UwYgckFxtdzra2GIxmTZ7Ga0KTwtYho1pf3fi0IM45NgscUvaL3eeR6+JjUu6IgZDghg9CInff1tSTlSiROLRKG/u+mSrYzAkgtGDPDDGVPRFb3O8jnLqDvnfbjA0S4we5IExpmIl5RM/Nhi8WInRg8iYhjMYDIYYMMbUYDAYYsAYU4PBYIgBY0wNBoMhBv4HSQMri44u+NAAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle Jz - 2 \\frac{d^{2}}{d yd t} Ax + 4 \\frac{d^{2}}{d xd t} Ay + 2 \\frac{d^{2}}{d yd x} φ = 0$" ], "text/plain": [ " 2 2 2 \n", " d d d \n", "Jz - 2⋅─────(Ax) + 4⋅─────(Ay) + 2⋅─────(φ) = 0\n", " dy dt dx dt dy dx " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV8AAAAkCAYAAAAuJzk3AAALj0lEQVR4nO2df7QVVRXHPw9hZYpCyzKjENDih0n8kCVakPxIQrGyH4T4Iyj7JRI8whJBHg+lhQrpAyQzMkGSVkqZJia4FEGglgg+EsQQioUsIqHMRYUi8Prje8Y7776ZuXPvnHvn3vfOZ6275nFn5sy5e+/Z55y9zzlU1dbW4nA4HI7S0irtCrQQOgLPAi8DW4AvpVqblonTQbo4+WfROu0KtBCOAhOR0Z0ObAKeBP6XZqVaGE4H6eLkn4Xr+RaP8cB28/ffkdEBvA68Abw/jUq1MJwO0sXJPwLnfItHL6A+4Pt+QBvgtZLWpmXidJAuTv4ROOdbPIIM7zTgAeBaoKHUFWqBOB2ki5N/BM752qEb8AzwFvAScD5wLo0N7z3AI8BsYEOJ69cScDpIFyf/PHHONzldgeeRwZ0LTAEeBt5LxvCqgMXIOJeWvIbNH6eDdHHyL4BiON+1aDhxYRHKtsVpwDdRK7wTOAy8CaxDw6F85LIQeAJlcncCK4Cngf3AP8w1nwJGAZcjY6wHeib6BaItsBfJ+3cWykuLa9BvaEB6yReng/jYtH2PNOVfbnwE+AWwD3gb2A3UAe/LvtD2VLNWQG/gGJnMZjkyErgHZWBXA3uAD6K5hz8HLjHX5IpJdQQ+g4ZYfo7SeLi1juI0dLXAh1E9+xah/FLQEVgA/Ac5skLudzqIjy3b90hb/uXE2SiccjrwKPAKkstEYDhqgP7pXWxbGF2BU9BE6nKev7cD+Dxqpa4CbgK+AXRHGdgvE28SeB+CG5rzCM7y2uQcYAKaK/ln9BKUcurOWPSCDkpQRhVwPzLInxZYRkvUwVgKl70t2/dIU/7lxk+Q452AevhTgCHAXSgm/iP/xbad73nm+ILvu8nIUCaH3NMNdc/XWq5LFM8AvweOZ32/n4wTGBSjnAbgBJRI8LgI9YDqE9UwN3cj5/V99OKDXoQgVqG6Zr9UXhyuAbjNfhVzMgEZ59eB/xZYRqXoYD2Z0ErQZ01Ra5rBlu17pCl/gE8DjwFjUBjjOWRLL1La0OdZwDAUZliYdW6GqdM1wMnel6VwvuvM8YKQexYg5Y23XJdCecccj8a4dhNqOOaiIccINI0Gimt4VwKDUUu7HSU6IHzY+wP0ss1CsvaYi4x2EWqlS0kP5PDnkazhrRQdPALMDPjsMedXF62m8cnH9j3Skj/ArWjJstfLfhR15n6Lwp8rgQ8VuQ4eQ8xxFU0btkOo8T0Jnx+0HfMNcr6bUVC/f8D1I4GLgflkeg5p0hr4mvn7yRjX70NJitnAV9HQawnq5b9ajAqisM4cNFSvNd95sgt78begDPMY1PouBqaiHttDwHeLU9VQWpv67DH1SEKl6GBuwHdzgDORPm6xV72CyNf2PdKQP8iObwa2okawP9AF2dNspKMvAFcjOQdRDbTP45n1hCdVu5njjpDzr6KecVeUjLTqfKvQkOsojR3pO8BGNDzogJQF6n7fiZYa1lisRxJuQ1NlnkCtZhweNB8/xfw9M5Ecx6MlmpDpdYUNeUGGOgo5i7Yo/rQSGXF2S11salBdB6CGOSmVogOPKjQ0vc4cv0f6Cw4KsX2PUsu/NXKwR4DRwEEU6oDMSPtx5Hw7R5RTDXTK47lLCHe+7czxzZDz3vftvS+yww67iY5LZX9+6bu3G2pttqKJ1n7Wm6M/9FCDgv43RlTYRr3iMgG11q8gh1SOfBy9qNtonKDah3phHwVODbl3L5ry0gmFejagGPCRGM/dTVMZ32/OrQ44tziirPNR7+THwB9jPLvcSKIDUNhnMXK8dyAHHuV4d2NP9mFUgu37GYJmmPwB+RvQqLuBTKjD61BENe6dUUMY9zM2QZ2rzPFdXWf3fHfR1HFGsc/3d1DIwcNzvv1RPKY7MAm9fEtiPCdJveJwPYo9vgwMBf6V5/2lYiHS2SSUYfbzEkqU9CY8hnrA9/e1xJ+RUkfT4Vlv1LNYghyEn/qQcrxwww5gesxnlxtJdNAGWAZ8BY1AZsZ4Xh12ZB9Gpdi+n4HmuML3XR80tD9k/u3FeosZ+vDjdSDbhZw/Neu6Js53aIKHRznfDcjjez3fu1EP4HriDbeS1CsX1WgqyFbznNeL+KwkXE1maLUq4rq+BL/4o1HccT9wBpp7eF3MZ9cFfDcWOYDFKOkRh7Yo5gXhjeki85mHdFNOJNHBicBylJC6AfX841AX8N1Y8pd9ENVUhu1nc7Y57jfHLmgRgz9WPcgcn40opxp7Md+/mGPXkPMfM8d3Y8I2Y75RzvcNlBHuh7LEQ9FE7xctPr8QbkSxrnqU+DsYcE3asThQazoHxc+XElynzkiuQTHHS1EvaRsasq1Fq5zmoaFmqXgbuC/kXF9U93XIkL2QRDnIH5Lp4GQ0HWowMA7ZftrEsX0oH/lDZujucZI5er5nszl2R3b+HBmnGEQ19mK+3myVYSic68+jnIIWWBwG/uR9acv5esm2I2QSD9msQ5PS70WKvtnSswtlOsowb0ICCxtuZSs8DepQb/UO9NIE0Q8lNrOz7QNQj2sv+p0H0G9/GL18l1uvbTiHCV8+XItsaAlaaeVRDvKHwnXQDiWx+qMe6wNNbys5cW0fykf+fragkdwo4Ndk5L0ZNYDLUeK/Okc5nS3WaRcaDQ1DI/oFvnMzUQN8L7757Lacr7eybRPhCZz1wLfR0HMS6caWxiDjO4ZaxwkB1+wmd/JiPBJ0jwR1yVVGT3P+NaKnI21Fv6cH2tDkMNrS73EUZ7oYLSkFGecLaOg6EMmgEimF/CGZDpYBn0Qbz5xFZmqan9loVFAKbNk+JJd/offfh3zIF4Gn0MpC0JTJ4Si2PppMT7hUjEMh1vloBLQdNbqDUbhhmv9iW87XW9cdlb3+mzluJHzoWSq6mOMJhLeOa8htgL1IPpHcX8ZcZIgjfOe9BM9EoleBvYWSC92BT6DM+0o0bPwsapn93IQMdw7hC2DKHdvyB7s68KZYgt6R7P0PQHHW2vyrXTC2bB+Sy7/Q+w+imO6dSL7eqrHBKAl3K0oglppdaPRzC2oELkUdnvmo99uow1ll6X8vXoZamhFoiBXEY+b8BcgomwPPA78BbrdUxhqUIJiRuGYtA9vyB6eDfEgqfxv66wL8FfgVyidVDDaWF/dBU2d2Ej45+0rgcyjRUKmON9dm0VMInnM8I2YZR1ArXmPuC4udt1RyyX8kGrr7EyjzUE/0AzHKaIPTQRRJ7d+G/oLwkptpJ+/zplDn2woNlZaiGMcxtDOSf97jmUghi9Ck8G3ADwutaMrE2Sx6IZpb6H3moakwD8YsY4C5rr+53xuuOuLJf7k57yVybwCuQMO/AzHKOIbTQRhJ7d+G/sKoWOdbaMz3HNQ7OIgSOrNouqXccJRI+Dfa8KKa8t5mMgr/ZtGgXv7TaO9Tb7PoQ2QmeE9F69wHmWvjlHGhuX8j5TW9pxyII/8GJPcVKPY2FU032pVHGR1wOggiqf0/FeP+XPoLw3O+9fn+qLQp1PluJXev+WfmU+nE3SzaYxrKeg4iM6E6Thl9UAPmXvrG5CP/VchxzgIuIzPnPG4ZTgdNSWr/NvQXxWUxrilLmvvO8jbIZ7Po6Wi6y0U03t0oThm9qcChUwnIR/5DUAa9FY1Xa8UtozdOB9kktX8b+muWOOebmwbibRZdA3yLxqGGfMroSXlsq1luxJV/L7RvyDg0s8b/vwbELcPpoClJ7d+G/polzvnmJs5m0dPQZPUr0DzQM8znxDzKaIXmhnYgv/XmzZ04suuEYopz0Aq5GjS3eWAeZYDTQRBJ7d+G/poltub5NneuIrNB8xa0N8Jk8+8GlFQM2kZwCJk131FlHDfnb0cv/j1o5Y9DRMmuPVo9uRb4ju+eh5AsB8Qo47jvGqeDpiS1fxv6a3Y45+twOBwp4MIODofDkQLO+TocDkcKOOfrcDgcKeCcr8PhcKTA/wEDlh/Xvutp2wAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jy - 2 \\frac{d^{2}}{d zd t} Ax + 4 \\frac{d^{2}}{d xd t} Az + 2 \\frac{d^{2}}{d zd x} φ = 0$" ], "text/plain": [ " 2 2 2 \n", " d d d \n", "-Jy - 2⋅─────(Ax) + 4⋅─────(Az) + 2⋅─────(φ) = 0\n", " dz dt dx dt dz dx " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for p in p4:\n", " display(euler_equations(\n", " add(\n", " product(vector_q(Dq(φAxyz, txyz, reverse=False)), \n", " vector_q(Dq(φAxyz, txyz, reverse=True))),\n", " product(φAxyz, ρJxyz)).x, p)[0].subs(simpler))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This set of four equations is about phases of EM fields. It is an open question about if these expressions will every be of value to understanding Nature. The first two equations can be written in terms of the magnetic $B_x$ and electric fields $E_y, \\,E_z$ respectively. The third and forth expressions resist being reformulated using electric or magnetic fields." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deriving the Homogeneous Maxwell Equations\n", "\n", "The no magnetic monopoles law and Faraday's law are usually presented as vector identities. There is nothing wrong with such a commonly used approach. There are often multiple perspectives on the same identity in math and physics. While this approach might be somewhere in the literature, I was fortunate enough to stumble upon it, so will share it now.\n", "\n", "Is there another Lorentz invariant made up of only the electric and magnetic fields? I recall seeing in Jackson's \"Classical Mechanics\" that the dot product of an electric and magnetic field was invariant under a Lorentz boost.\n", "\n", "Go back to high school algebra at the start of this notebook, the sum and difference of the electric and magnetic fields. The norm squared of each should be the same because the only difference is which direction the magnetic field points in, not the size of that field. The electric fields are identical. Here is the norm squared for both:\n", "\n", "$$||(0, \\vec{B} - \\vec{E})||^2 = ((B - E)^2, \\vec{0}) = (B^2 - 2 E \\cdot B + E^2, \\vec{0}))$$\n", "\n", "$$||(0, -\\vec{B} - \\vec{E})||^2 = ((-B - E)^2, \\vec{0}) = (B^2 + 2 E \\cdot B + E^2, \\vec{0}))$$\n", "\n", "Subtract the second from the first:\n", "\n", "$$(- 4 E \\cdot B, \\vec{0}) =(0, \\vec{0})$$\n", "\n", "Zero is Lorentz invariant, but it is not trivial. Let's apply the Euler-Lagrange equations to the dot product." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "||D_EM||²\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAAaCAYAAACXZrbsAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAI70lEQVR4Ae2d65HUOBDHh60J4A4y4DLgEQF7GfCIAMjgKL7xjeIyACKgjgyACHhkcGRwy2bA/X8aScgee2YkWbK9dldppNGzu/VXuyVrdq/9/Plzs9L4Gnjx4sVv4uK55eSmjR8r/3J87lYOampgxUJNbU93rEM42E6X7cVx9koT9dRJrfRrpb8q/OHy1ngxGlixsJipPihoLw7ODjZbC2tq4ImM9Xkw4CulbyrvVpC3JpehgRULy5jnY1L24mA13MdUV68cb/tLveHWkSasgRULE56ciqz14uDaesZdcRoihpKnjcd9X/F6VBKht6tYdcXCVZzVeJlCHOx53Cp0L8bie15b9GogRq+qy/HIfYXbvR1WLIjhvSJbsx0qRp9TwwJKj+F/tpNUgfEYPbZx0DDcKvxL/K5nqmUmjfNq9HuQ7GTibd9WevQbJSsmDk5XauEssYCwKx5Sp7yzXTIO/FGJJgQP767iZ11DKP+J8h8ouBdo71v18NQvFJ6p7rdW2WS/ileM6Z8KdyyTnDOHBpNresh2XeGL6lM3iexYl4rfdHWgfMZBf+Z2if2+Ufy9q37pPI27OExI5ip4sOPMBgtgbWl4qIGFVBwYw63GGKdPio9uzVXnh+p2GjCV/aMys8VXejbGWzxvxC8X2r8p7tSB8s2CVpxsuO04XPG7p37Ch8NG3zHaXAEMH5wYcAx5o67yipPGXDQmJH9xPGiMWWABsC0ZD6WxkIKDM2sB2JpjNA6SBsC4sKA/9FR0fRiPsafO5LIll9tFfDzAHF7yEJ4vOkLfbWIRwwexC1wHijbayKPADimHFouJingojgUAsOIhfRlUwkI0DrZWpIdi8BRje8zAYdihf3fRbD6dF933QHKCZMslPb9R+KHQ8KT1/Xc3yAAxD1dCDi0ZE1XwUAkLYGDFQ/pKKI6FFBycqRFHG6d6kkYItek7BsH44yG2z7/T1VanpXkgSa6Gx63v/mWi0sjVKM9gDX0/zGhftKlkXTomauJh0lgAaAvHQy0sROFgq3nBGJ9qkBBir64mlif6WwVizm8bDwJb7rbud1XnsQLe+SMF6LPqjGnsuUnTkEv8ICvG2pPyGg+sDLkYC713vqT0A46XKIqJQG/cUf+q714PtuytYl6Ej0XReMiQaepYYA6K4oEBpD90zjsy6IG+874JG8Gxn8eHKa37EY0Fx16kTFE4wHDfUXBn027MvdgygWHeKO09UX3FEKPg18rvW2z+N/e2LUYeY81xgTvfGcVwa3wMNMTVHAcc5CT/2I9fUuXiyMWNq+TkqDQmntu5x7MHC+HCZCdC/iiUgYdUmaaOBeahKB6kc9YbOMAW3FBgXeEksSb7bIqKy1IGFjZqGytTFA4w3AxwcYIKnKF5KqbaHrVZgMqH4XAR8h1PO3wZd6nv1Mfrhq4rhOUms+IH3gRknvIkxDMPog+KG3JS5ihTLvTNGFOlYpiQ3vBgPlvB0X0bezHeXQn9ReMhU6apYwEdF8ODnUBsQOOmlXSKTXhsy8eKorEQMBorUxQOMNwMgDE9RgjBvdM9Y6a89wp43njdXBX8FnTG97AN1+3YBpkxFR98oqoc0HxSID6VvBE+oYF5IGkcz7PS3xUaOwD4UAj1lCMX+oiRp1MM8YOH4h6oYR3mdKPyrhfO6P6gztW0JCbQrdM13vVLeA0Iedp5QbGRqyQmUvCQI9MgWEBB0usc8QDf3j4ozdw+V3ipdLjeEHGPbP1S9iEFC4bHBJmicLDd00R/BkI0jFmrKq4+RD23MDcSwKdN6e6l3MGFaeuZSO2ZvM671WG9jPQttW2cb9u+WASGxANgYufw9y7HLJIcuU41jG64zlh8dRnmjfLZ0bDN9Px2dpCfGY0J8WQWo2Laole/Q1Mec0Fe13woe0e2j1KYiMZDpkyDYAHNiI/Z4cFOqYnEP7tQ/j5P+FuGsMpeWnXB02Sw0GYwQqYoHJxpoAsFFksvaXDADH3YRZ2fblvRNmi+svpxi9U/AJSHJ3twfN/BwAnLD73uyaUy7wWoHKPtDQwNQrL9IMOpclEXvU+VamACr9/vvKwiwAe7ul4MlVTYAHhIkWnqWEDlxfFgdX+u2DsbSo9iFxDY8kMy2TbYPk6VKQoHGG4M1LHzVhYU1OkJiUEMO14eC9HXURqjzFmxa49HwMIMjSIvdS6VPwa5h43nuc2EeEM3/CkAz6PSuXLxdA110B527O/FMBEIhl7bOmA+euciaFsqmYSHgJkUmaaOBcQrigetJ2wHa6rtHPHCcizKwkKCTFE42EoreDd3j2iHa3ttg2uaiEGMMrcx6Oeeyfz1QRmB2yN7TxTb1r2o+tWqXgrAbMRHp4dn+UO29plwrlzmnL+emNEjlcSEYwZjAFgNWV2j187tvq1WOkrFg+MrRaapYwHZiuFB835L/TPnOH3EeLg3FJiL9rpTVjVKxkKiTFE42EoN7xQwTnskBsjH4KLcjf1O0hEexoUC/xvRHxO4QsV4TzxFWZC050YKHjjnx/ys+0LprnZUL0IaD3l4ksM7YaO8tvzUuaNA3NhF6DuUK9fYBmonRf9nSUy4UTnH5L42twf+U3BXL6t63APhIUemqWMB2Uri4ZHmwHi3ijGWrE0egNiKTodKZUVoQCykyBSFA/dHpnixGHMTo4jiltCpwMHDgoeXM1SDi62+WQBZLyfVR1VMaDwM+LliPI8rQcdkUnlxLKBIjTM7PFwJAJwoRAoOzmzfLJoxt6gninglquFpou+SdKnOCTlUDBMCKj+wYMdlSGl2NrwAfrnLmd9nokw1sIAyJ42H+c324BxH48AYboGO4ww8NDyAlQppwOoXPbdfwgw6ovr/mDuGbV8KE3iA7wKh2R7zx7eqHpsF4w+RjJJJsrLWimMBwTTW1PEwhP5n2UcqDraBtLwI4KzXvU0NitbkQBrgbH9OO5tSmMDDuC7Q8qcTODLih1tVz7Y15tAUK9PcsIC+SuFh6LmYU39JOPD/AQdJrfXnAry/SzknDUyZV+kUI8UvTHnxMhtaMTH8VM0VC2hixcNweMjBwf8Hs5Y2kJM94wAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle \\left(Bx - Ex\\right)^{2} + \\left(By - Ey\\right)^{2} + \\left(Bz - Ez\\right)^{2}$" ], "text/plain": [ " 2 2 2\n", "(Bx - Ex) + (By - Ey) + (Bz - Ez) " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "||D_ME||²\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAAaCAYAAABo6FFLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAJOElEQVR4Ae2d23EUORSGG9cEsAsZsBkYiABvBlwiMGSwFG+8UWwGQATUkoEhAsAZLBmscQbe/9NIQt3TPR6pb5LRqZKl1qV1Ln8fSS31+NbV1VVTqXwNvHr16jdJ8dJKctfGp8q/LF+6KsGSGqhYWlLbN7uvfVja3GzRfynp3sjQz53ESr9V+pvCHy6vxlUDB2qgYulARdVq12pgEEtH1zatFUrRwDMNOCcBs2+Uvqu84yCvJqsGDtFAxdIhWqp1DtHAIJbq4HOI+sqow6rnaxmsVi4z10DFUuYGKoi9QSzdqns+BZkxglWteFj5PFJcX7tF6K1W3dVAxdKuTmpOmgZCLO2sfFToNqvT7l5bzaKBGLuoLq/aHincm4WZyJvG8B5561o9QQMx9sgNS4gbw3+CemqTCA3E2KKLpdbgo8K/1G/dI4hQ/oJV2b/BPnvJgoFVzz2lVz/pVjG111xrFRaJJZRV8bQWZAb7TcaSf+0mozJTfqD4xWA3Iwp032dq/ljBbYp/7NyOFdeFwgvVPe+UZXspXhkQ/lS4b5lk3yV0+hyBRrbbCl9Vn7pJZPu6VPyu7wbKpx/0Z0692etG8fe++nPnqd+KqQQlS2+zY8r2UQyWUGPFUzyYcsaSGXzEIA7ys+LZX9Oojx/qq9cJq+wflZnXRUoXMwABCfHLB1Pnint1qHzjUBQnDz62H45PP9R9wgGu0TUDD8erw8kDgxCDUauu8mYn9VkxNVLL0uGsmNL9i8ASaqx4GgemHLF0ZEXiNQ2Oa1aSAnCQOKWzgY4cD2bmPlAnu2zJ5VZzn/Ywx2plihUIOsJeXcKRwAexCxxzTBp4kEmB1WoqVUylak7t0L9tPiemSsESqqh4soCIjXLF0sYK8kQMLuHwr3ugGJygf7dRMX/damZoUHWCjJZLdnqn8EOhtaLR9e+uk4liJgmEVKqYStXctt3smCoIS2ik4ikdT1li6UgA5DXXFDPyQ1RjlKA+h16pMQAyU+/uBx1y7zXrmEFVcrVmqbr2BwSURq5W+QiGsdeTEe1nbSpZK6bGa3gpTGWNJdRY8TQaTFliaSOxGBCmcorXaQkl7PQlcDHDfq9AzH5GazC05e4V0APVOVVglfRUAfqiOmsOWJwQbMklfpCVAceT8lqD7gi56Au79R488B2ul8gaU4He+Qbqm669Hm3Ze8UcjlmTojA1QqbcsYQNssaTA4lsgM3Yt4Ye65o9YPwUr7A9xkzpsn+isORYS5AnCksMPvcV3F6L63fy2ArC4NIo7VcEumQwwUBvlT/0wPvfB7JtGagYcHj15N5brzL4qH8GGYgjhw54yEn+dR94psrF6zvXr5LZUe6YemmxwwoNLIWOgRUl+atRIqZSZcodS9ghdzw1shnPPFjCH91R4NlmsolfGPJrKp6X1LfzE1H+KVGeKCxtJDpKu5hXBebuTgnPJVh3ZWOcgPIbhdARcM2KJ9xgv9Q19Vn9QLcVwnKTueAfZmWQmemQEM8MpmeKW3JS5mikXNiLPnKlbDElvTML/GIVh+262F9ylj1kvyhMjZQpdyyho2zxFBgQP9Q6hSq74JdOgzprJKOwFDCYIk8Ulhh86ASHvkNSHkb/rEB8KHkn3GmAEviuYMchK++jAisgVj8cwz4P2nIdtuEoM8tZw7PivbMKlU8pQ8CWT5pBVf14npX+rtBaicGHguHZthwjF/qIsYlntpsQT8zU3MQgLAYXjcr7DqKg/316zxlT2MbZilXO61BopdFFN69VRe1zw9QYmXLHErrPGU8GG8KE91EWHy9V8Frp8Jk3dcM/GWJpjDxRWGLwGSSruN7vVgYbDRfwULcccqcqSzaIes45NOLBp03pdqN9r3Ow9Uw0sQzhrV36WInWfo8twKkbEg84K1Zwf29zjFMfI9fgw+juf2gs3voGl0b5rC5ZqnueD73nvnq6Hw/japiy/TeKwRl28Stt5WFL8vrsqewt2XtMJYO7bRhHYcry0yhOkalYLKEwK/tUtkjyUaHhxA9vJPhNxfB7u7BKKz0x/61724soLHVvEClPFJaO1NmFAg/cbCQBUAB0to16/7rlYdcp+8q6j3u4/CCmPFYUs/LvGegkLD/k7silMj8TUjkDj3dyNAjJ3gcZDpWLutgtVyoBU6zc/AraKhJ8sTofxODcCh+JqRSZcscSKi8BT4213YliP2FTehXfhNIsPyST/JNtHyNPFJYYfHCSc+8f8FBDvTNKCcngxEwbZ+DrKM3Awt6Ja88sHecQOnY2Wi+Vvwa5AdPz3GVCvKFbfrbI86j0WLmYYYQ66Ha79nW2mAoUg126OsSeg7YM2s6ZTMKUZShFptyxhGjZ40nPNP6L57o7yeQQwlqUjKVEeaKwtJFWmOU9mFk7HInuDhqmSwnJwMIpMfh4aDJ//qGMwKm2nVHVtnWbxz9bLZcCcI346J0pW/6Qrbs/MlYuXjP09gk/GVDOmHLqwaHxsBiytsIuva8hbbUlolRMwVuKTLljCbmyxpOwcywewQ2TZ2JWGncUsGX32VfWYpSEpRHyRGFpIzV8UMBBTk4SgvsyaGCcxl6TdMRM7ULhVGX+lZMrVMwslJkEToH2nJRjJcR+Cj8hc6F0Xzuqz0LqD3mYzcA7oVFeV3/Uua9A3FrN6RoaK1cOTnIrSf/fnDHlOOadPN/zcCLpPwV3LH7xlc9EmEKuFJlyxxJy5Y6np7KhWWUoxuHjH5gI4K8WnSROhKVUeaKw5H5YlM3+oVNqKqqUiwYELgY8BmDnLGdhTffnIUo+cKD2RWFK/DIInShm9nYj6DqZVF4EljCGeC0KTzcCQBFCpGDpyN6fB2/t1w0Rov7SVZndYq+56VIdEFIpW0zpQeEDQFbOhpRmhcqhkNfbnPL+JspUCpYwSLZ4Kg8ts3AcjSUz+Ai4vNpilstMqFKmGrD2wU7dTc3JOVYfn8b0Y9vmiilWdR8CpfGahB9sXfQVbtD/FMkomSQrz3oRWEI5meNpCvsVe49ULG0CidkYY+/CnZAIimoyEw2w11XSCjVXTDFLu62Hhp954vUlHzcvvtejfqekWJlKwxK6yhVPU9qxxHslYcn/J1MktiMYH0j5c+olauIm8iyb4Cj5JQg2Mouhiqn8TFUqltBkxVNeeBqDpf8BjqWtHyCRLtsAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle \\left(- Bx - Ex\\right)^{2} + \\left(- By - Ey\\right)^{2} + \\left(- Bz - Ez\\right)^{2}$" ], "text/plain": [ " 2 2 2\n", "(-Bx - Ex) + (-By - Ey) + (-Bz - Ez) " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gauge_free_EM_norm = norm_squared(gauge_free_EM)\n", "gauge_free_ME_norm = norm_squared(gauge_free_ME)\n", "gauge_free_EM_norm.subs(fields).display(\"||D_EM||²\")\n", "gauge_free_ME_norm.subs(fields).display(\"||D_ME||²\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diff of norms\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABY4AAAAkCAYAAAAuLa7CAAAS2ElEQVR4nO2dfbBtdVnHP+eKowYSNjUjFCrR8GLgvRcIlOFN1NTQKfMtTPI0WFkS9yJUhsJsfBkNEA+jZGaMQGqTkAWJCY5gCN4SwcNbplFRMYaWkUMob3H741mrs84+a++9Xn4vz7PW85nZs+9Ze++1v/f5/p7n91u/tfZvLU0mExzHcRzHcRzHcRzHcRzHcRynZFNuAQ04BfhabhENsaRVK5ZiaEmrVizG0KJmLViMnUXNsbEWE2t6tWExfhY1x8ZSTCxp1Yq1GFrTqw2L8bOoOTbWYmJNbyqsxcWa3lRYi0tUvRYmjjcDq7lFNMSSVq1YiqElrVqxGEOLmrVgMXYWNcfGWkys6dWGxfhZ1BwbSzGxpFUr1mJoTa82LMbPoubYWIuJNb2psBYXa3pTYS0uUfX6xHFYLGnViqUYWtKqFYsxtKhZCxZjZ1FzbKzFxJpebViMn0XNsbEUE0tatWIthtb0asNi/Cxqjo21mFjTmwprcbGmNxXW4jKqieP9geuAh4A7gMOBg9BpmCWtWrEUQ0tatWIxhhY1a8Fi7Cxqjo21mFjTqw2L8bOoOTaWYmJJq1asxdCaXm1YjJ9FzbGxFhNrelNhLS7W9KbCWlyS69U0cbwf8GXkP34Q8FbgcuAp6DPMklatWIqhJa1asRhDi5q1YDF2FjXHxlpMrOnVhsX4WdQcG0sxsaRVK9ZiaE2vNizGz6Lm2FiLiTW9qbAWF2t6U2EtLln0xp44PgnYWTzeuOC9FwGfAbYBdwNXA58H7gO+1fJ7dwPuLb73L1p+tgkhtUJ8valwv5szBM9z+V1ixfexeQ3j9ls7OfPWiodDyNmSIfsNnrd1+PjKdv4Ovb+11D5TkNtvr9NhGLqPY/CwZMjHt+5jPe5jA3aJtWNgb+ADwP8ggVv03hcil1hXeYxus+YT4EcRow7p8Pl5hNYKcfWmwv1uxwTbnuf0u2SCDd8njMfr8v1j9lszufN2gg0PJ9jO2ZIh+w2et7Pe6+Mru/k79P7WUvtMgQa/J3id7svQfRyDhyW5x01gp/5qxn2MQKwrjpeAjwLfAf6gwfu3Av8L3Da1/VDaB+DZwKnAZ4HbkeD+cMt9zCOkVoivdxHLSIM+rsc+3O925Pa8Lzn9LrHi+9i8hnH7HYNl+tdoyJ+3VjzMnbPLuN9N0Zy3ofDxVTty5e8y6cfSYC+GltrnLJbJU6PB67RGxuDj0D0syT1uAjv1NwbLDGP8CwP1MdbE8anA8cAvAw82eP9O4AnAkyrbjkVm51dbfvcHkQbzFsQokADXcW3x3T8/tX0JuKR47b0RtbbRe3rx3afP2M/+wMPADR009MWC3128Dq21rWaAm1j7mUXd4687auhDTr9LrOT52LyGvH5ryPNjgKuANwAHA19EYvdV4Hkt9xWS3Hk7tJzV3CfD8P0OrdnzdiNNPOyTBzn7Cu9vZxOzBuY63nO/60nR3w29To/Bx9B6NfoI+cdNELeuuY/1uI8NfYwxcXwgMsC/kOYHTLcghep8YF/gBOCy4rXVFt/9OuD5wO8DX0MWjIbZl4f/FvA48C7EgJLzkeB9BFlsOobWtnpvLJ6fO2NfH0D+D6e01NAXK3538Tqk1i6aAf4cOKfm8a/F69d30NCHnH6XWMnzMXoNef3OnefvBL7A2lnfK5GB+KeALcA1wJ4t9heK3Hk7xJzV2ifDOPwOqdnzdiNNPeyTBzn7Cu9v64ldA3Md77nfG0nV3w25To/Fx5B6NfoI+cdNEL+uuY/1uI8NfQw9cbwL8MfIf/TMFp/7JnAy8FLgK8hBxKXA94B/aLiPpwLnIZelT4pt5Qz/LKNuK/QeiCygTaH7LcAngTdF0tpF763A94Ejal57NfAiZKHs22tej4Ulv7t4HUprV80gRWEy9dgVeAZyJdY7WmroQ06/S6zk+Vi9hrx+58zzk4C3A3cBm4EfA/YB3l+8dmXx/3l9w/2FInfeDjVnNfbJMB6/Q2n2vN1IGw/75EHOvsL7242kqIG5jvfc7/Wk7O+GWqfH5GMovRp9hPzjJkhT19zHetzHhj6Gvjne2chl2EchhakNHy8e0/tryjnAXshZsvuLbeUM/6xLw0EC9lrEpN2AdyOz6ychV8DE0NpF76PAzcjl5HshjQakYV0AfLuDhr5Y87uL1yG0lnRtoyVLSIf+68XzbyI/V0hFTr9LrOT5mL2GvH7nyPNdgPcAjwAnAv+J/GwI1q7w+DTws8CzGu4zFLnzdqg5q7FPhnH5DZ63daQcX/XNg9xjA/D+tiRVDcx1vFfifqfv74ZYp8fmY1+9Wn2E/OMmSFfX3Md63McGPk5fcXwP89fYmH58rPLZw5HZ/fcBO1oID8FPIoG9i/WLYH8TmfH/CWD3GZ+9F1gBnon8RONLyDp7j0TSCt313lQ8V39icjZyhuB3gO8u+N572OjhR4vXrq957ZI5+7Lodw6vS/q0UZCfDl2CFJJzkYI0b6B7D91zuY6cfpdYyfPUXkNYvzV4Dbby/Hjkzrl/BdxZbDsUifVq8Xc5+TVvMHMP4Wo05Pdy6DmrqU8G97stMfPWan/bxcO+edCXPu0uVH9rcSxdJVcNTKWzJMRY2nKNBjtel2is0+5jezT6CLa9LOnSj3XFj3dmM3gfp684/kfgoRZfWp6pKi8N/wZwVovPh+KiQsNpyF0Gq9yB3J1xC7PXOvmPyr9PRi71jklXvWWxPwJZe+SAYh87kEvUF7EC7DG1bQtyNuFSJImrrM7Yj2W/U3td0kfzE4FPAK9CrsY6p8H3dc3lOnL7XWIlz1N7DeH81uI12Mrzo4vnqyvbtiI/GXqg+LtcI2rez4hWCFOjQYeXQ89ZLX0yuN9dCJW3Q+pvu3jYNw/60rXdde1vVxjGWLpKrhqYSid083uFYdVosON1ibY67T52Q5uPYN9L6N6PdcWPd2YzeB+nJ45f0PHLdwP2K/49K5k/UjwuBLbTfwZ9qXh+PWuXVl875/2HUG/UicjaIvcBTwe2ITP9JSFn+pfop/dLhZ7yLOEHkbMTb6aZzpWabctIkl6CLI7dBKt+L/IawvsN/TQ/GbgCWfj8DORMWhO65nIdbf3eFvC7oX/eQBrv++rs6jWE8ztHblexluel3n2L5/uK532ApwGfrbz3uOL5C3P2t1KzbZn2NRry5u1YclZLnwz5/E41FoPwtSZU3ubsb7eTf3zVNA809RV9+tuVmm3L2BhLVwmRu028D6E51/hqpWbbMmlq9HZsHoNqHV8NYZxsKWerDKW/1XZ8u6iuafZxpWbbMrbGvyWWfOxVV0OtcfwwcPGM1w5BZrBvBL7O2uXjSzPe34bdkQWoH0XONNQF9llIkdla89rPIGc17kIu2b4BeCPSqP4+oM5Qeu9H7s54GHLHxhcAHwK+GlBjEyz63cTrUDqr9NG8K3AVcmfO30C8zkFbv7cH/v4UeQ79vR+j16ArZ3LleckPFM+HFs+3Fs8HFHq+iMQuBTnzdgw5C3r6ZHC/+2A5byH/+KppHmjpK7y/XSNFDczdPt1vIVV/N/Q6PQYfY3kIenwE28e3Teqa++g+LqKVj6Emjr+PDPLrmCBBuhT4o4b7OwU583Xggve9A7ky5VxkXZ46DkMWgp++k+FRyOz+vcBPIz+RPAu4HHgv8HMBdYbQW3Ij8Gzgw8hC1m9v+N0hseZ3CK/b6Ayh+QeBzyA/JVoGLmvxnaEJ6XfKGEJa793rjaT0O2ee34ZcMfla4E8rum5FBgtXAI8RfrAyj5x5O/ScraKhTwb32/O2nhTjaeifB6n6Cu9v15O7BsZun+73Grm9hmHU6bH72MVD0Ocj2D2+DVHX3Md63Mc5PoaaOA7NZtavZXI+EpATKtsORgL1b4hhs7gTWWfkQOApSOPajNwp8LvAi4B/L957BfAV5DL5o5FZ9jY659FHb5WbgF9FLss/Dfivht+vmZh+70cYr+t0LqKP558AjgS+DPw4UvimeQ9yls0SKWMYKs/rdE+3Ufe6nlR+58xzkDPdpwGvAD4H7F1sfxPwEmTtqhNZO5NrjVR9XaycDT2GqDKGPnkeGv1uytDzFuKPp0v65kGqvsL72zU01MDY7dP9FjR4DV6n67DmYxcPwX2cJnddcx/rcR/n+Kh54vjPKn//FBvXOikXoN4GPDhnXw8hizofADwHuavhNchl5C9GFlmv8rtIAM9j/R1Hm+icR1e9fzv1+j8Xzzcz+7J8a8T0+0rCeF2ncxFdNd8MHFO8dnjxmObb1BcY7aSKYcg8r9M93Ubd63pS+Z0zz0Gu2DgOuADxc9di+/ORGw+8E/i7lvvURIq+LmbOhuxTxtgnz0Oj300Zet5C3PFVNRf65kGqvsL72zU01MCY7dPHV2to8Bq8TtdhzccuHoL7OE3uuuY+1uM+zvFxaTJZpCc6+yPreRyJBPRkZNDwCuA6xIQnVt5/JzK7n5p5Oq8B3oqcFZhmQtg7I16FnIl/LtLorDEUv+9Fku2Cyme2IJ3zVmwXzVBYjaGVNqoNi37HqOv7AP8E/Amyfpw1tPR1bZin+S+Jm69D7pMt+n0x3eqM9byFvH1XmzxY1OZeDXwM+SXJvxSfuRBZC/tIZDmTsaMphk2997FVd7T4HTLPfXylfy4hVrsbuo/a+rBYx2dD91HbcWv2fNzUR30A9kMuz74DOAgpmJcjl3CvIpd0H1W89whgT9Zm51OySCfIGYc9K48LkTsVfjygjtcBL0cajcUD1CH5vQO5MqLK+5E7dvqksd0YWmmj2rDod6y6Xt74IMcN0vqipa9rwyLNMfN16H0y2PO7a52xnLeQt+9qkwdN2twVxevluptnAL+A/HzSJ411xbCp9z626o4Wv0PnuY+vdM8lxGx3Q/dRUx8W8/hs6D5qOm5VkY+5l6q4CFkUelvx993A54GXAt8qtu0FPIAUt7q7FKagic4HigfAmcBrkEvA7+753c9Aivy+wC8hdx3/7Z77zMWQ/N6B3P2y5JXIzwVelUijdqzG0Eob1YZFv2PVdcsDqZx9XVcWaX4eYfN1bH2yNb+71hnLeQvp+66uedBE506krV2NLGFyJnJ37+nlTMZK7hh28d7HVt3J6XfMPPfxle65hJjtbug+aurDYh6fDd1HTcetKvIx58Tx3sAL2bimx2OsX+R5K3Lnv1yDiKY6S96GNLLjgG8E+P6XID9b+W9kHc/twPcC7Dc1Q/P7b4D3AT+E/LzuXGRR9O/El6geqzG00ka1YdHvmHW97IDr9qOZ3H1dF5poDp2vY+uTS6z43bXOWM1byNN3dcmDNm3uWmQC8V3Ay5CbJTo6YtjWex9bdSe337HzHHx8tVrz/txzCbHb3Rh81NCHxT4+G7qPWo5b1eRjzonjrchPk26b2n4o8p8u2ULeMxlNdQKchdyl9FjCXY3zh8XDOkPz+xbgEeAw4BDgUeRskGM3hlbaqDYs+h2zrr+st7o85O7rutBE8xbC5uvY+mSw5XfXOmM1byFP39UlD9q0ueORK3s2ITeIcQQNMWzrvY+tupPb79h57uMrnXMJsdvdGHzU0IfFPj4buo9ajlvV5GPONY53Ak8AnlTZdixizGpl28HA7elkbaCpzrOBXyHvTzg1MzS/H0YGuC9HfgpwBlJQHLsxtNJGtWHRb6/rG7EYkyaaPV/rGarfmupMKqz0XU11bgY+hVxxdxXw7kT6LGAxhlbap0aG7LemviU21mJisd2lwFpcLB6fpcBaXNS0u5wTx7cghpyPrLlzAnBZ8dpq5X2bgOcga1/tkU7e/9NE59uAU5EFqB8Enl48npxSqHKG5HfJDuDNxfOnE+mzgNUYWmmj2rDot9f1jViMSRPNnq/1DNVv0FNnUmGl72qi85nIOn7nAZciEykvBo5OKVQxFmNopX1qZKh+a+tbYmMtJhbbXQqsxcXi8VkKrMVFTbtbmkwmIffXll9E1tx5KnL59Q3A6cXfj1fe83vIQOJDiHmpmadzJ7Jm0O41nzseuD6NRBMMwe/HK+97A3AxcobnrsQatWM1hlbaqDYs+u11fSMWY7Ko7Xm+zmaIfoOuOpMKK33XPJ17ADcV236t8plPIpqPSilUMRZjaKV9amRofmvtW2JjLSYW210KrMXF4vFZCqzFRUW7yz1x7DiW+Rxy0wIf3HbHYzgu3G/HcWLjdcZxHMdxHKcZPm6qx+NSIefN8RzHIpuAHwFOBg4CXpNXjkk8huPC/XYcJzZeZxzHcRzHcZrh46Z6PC4z8Iljx2nHMcB1wNeBVwL355VjEo/huHC/HceJjdcZx3Ecx3GcZvi4qR6Pywx8qQrHcRzHcRzHcRzHcRzHcRxnHZtyC3Acx3Ecx3Ecx3Ecx3Ecx3F04RPHjuM4juM4juM4juM4juM4zjp84thxHMdxHMdxHMdxHMdxHMdZh08cO47jOI7jOI7jOI7jOI7jOOv4P8lhH2W+BrqvAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\frac{d}{d t} Ax \\frac{d}{d z} Ay + 4 \\frac{d}{d t} Ax \\frac{d}{d y} Az - 4 \\frac{d}{d y} Ax \\frac{d}{d t} Az - 4 \\frac{d}{d y} Ax \\frac{d}{d z} φ + 4 \\frac{d}{d z} Ax \\frac{d}{d t} Ay + 4 \\frac{d}{d z} Ax \\frac{d}{d y} φ - 4 \\frac{d}{d t} Ay \\frac{d}{d x} Az + 4 \\frac{d}{d x} Ay \\frac{d}{d t} Az + 4 \\frac{d}{d x} Ay \\frac{d}{d z} φ - 4 \\frac{d}{d z} Ay \\frac{d}{d x} φ - 4 \\frac{d}{d x} Az \\frac{d}{d y} φ + 4 \\frac{d}{d y} Az \\frac{d}{d x} φ$" ], "text/plain": [ " d d d d d d d d d \n", "- 4⋅──(Ax)⋅──(Ay) + 4⋅──(Ax)⋅──(Az) - 4⋅──(Ax)⋅──(Az) - 4⋅──(Ax)⋅──(φ) + 4⋅──(\n", " dt dz dt dy dy dt dy dz dz \n", "\n", " d d d d d d d d d \n", "Ax)⋅──(Ay) + 4⋅──(Ax)⋅──(φ) - 4⋅──(Ay)⋅──(Az) + 4⋅──(Ay)⋅──(Az) + 4⋅──(Ay)⋅──(\n", " dt dz dy dt dx dx dt dx dz \n", "\n", " d d d d d d \n", "φ) - 4⋅──(Ay)⋅──(φ) - 4⋅──(Az)⋅──(φ) + 4⋅──(Az)⋅──(φ)\n", " dz dx dx dy dy dx " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "norm_dif = dif(gauge_free_EM_norm, gauge_free_ME_norm)\n", "norm_dif.subs(simpler).expand().display(\"diff of norms\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "norm_dif_t = euler_equations(norm_dif.t, φ(t, x, y, z), [t, x, y, z])[0]\n", "display(norm_dif_t)\n", "norm_dif_t.lhs.subs(simpler)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here again, sympy is not \"figuring it all out.\" By grabbing the left-hand side (lhs), the substitutions lead to a zero. Starting at the first term, one should be able to spot the vector identity: $\\nabla \\cdot (\\nabla \\times A) = 0$. This is just a different path to the no magnetic monopoles law.\n", "\n", "Use the code that generated the Maxwell source equations to do the same for the homogeneous equations:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "for p in p4:\n", " homogeneous = euler_equations(\n", " dif(norm_squared(vector_q(Dq(EM_potential, [t, x, y, z], reverse=False))),\n", " norm_squared(vector_q(Dq(EM_potential, [t, x, y, z], reverse=True)))).t, p)[0]\n", " display(homogeneous)\n", " print(homogeneous.lhs.subs(simpler))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It will require considerable effort to spot Faraday's law:\n", "\n", "$$\\frac{\\partial B}{\\partial t} + \\vec{\\nabla} \\times \\vec{E} = \\vec{0}$$\n", "\n", "It is easier to see that all the terms do cancel. I like that the all the homogeneous equations are generated together.\n", "\n", "$$(\\nabla \\cdot B, \\frac{\\partial B}{\\partial t} + \\vec{\\nabla} \\times \\vec{E}) = (0,\\vec{0})$$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Symmetries Under Conjugation\n", "\n", "Everyone is aware of the conjugate operator. In an unpublished notebook, Gauss wrote down the usual conjugate and three others. In 1999, D. Sweetser found simple expressions for these:\n", "\n", "$$q^* = (t, -x, -y, -z)$$\n", "\n", "$$q^{*1} \\equiv (i q i)^* = (-t, x, -y, -z)$$\n", "\n", "$$q^{*2} \\equiv (j q j)^* = (-t, -x, y, -z)$$\n", "\n", "$$q^{*3} \\equiv (k q k)^* = (-t, -x, -y, z)$$\n", "\n", "Each of these flips signs three times. There are all discrete transformations because they are involutions:\n", "\n", "$$(q^*)^* = (q^{*1})^{*1} = (q^{*2})^{*2} = (q^{*3})^{*3} = q$$\n", "\n", "There is no way to be \"almost\" a conjugate. Based on a short exchange with Aleks Kleyn, there are also involutions that could be defined that have an even number of sign changes:\n", "\n", "$$q^{*e} \\equiv i^2 q = (-t, -x, -y, -z)$$\n", "\n", "$$q^{*1e} \\equiv (i q i) = (-t, -x, y, z)$$\n", "\n", "$$q^{*2e} \\equiv (j q j) = (-t, x, -y, z)$$\n", "\n", "$$q^{*3e} \\equiv (k q k) = (-t, x, y, -z)$$\n", "\n", "Is there a way to use these conjugates and leave the derivation of the Maxwell source and homogeneous equations invariant? Both the derivative and potential need to be hit with the same conjugates:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAApCAYAAADTV+jiAAAO+ElEQVR4nO2debAU1RWHv6cYtyBEDHEJCpoA4gIKEReURWNQYzQuUVTkVcgmIItLxP3hUhhBfagkUbKglqaiJMaNGKwoKoiJog/3NaJSgAoxhnKHvPzx67b79fTMdM/0TM9Mn69qqt/r5c6d3719+tx7z73d1NLSgmEYhmEYRqOyUdoZqAF6AAuBF4BlwDGp5qZ+MN3iYXolg+mYLqZ/upj+JdJkPTtsB3RHFac7sBToA3yUZqbqANMtHqZXMpiO6WL6p4vpXyJZ7dmZALzo/L0KVRyAd4H3gW3SyFQdYLrFw/RKBtMxfdwyMP2rj9X/BMiqs9MfaAvZPwjYBHi7qrmpH0y3eJheyWA6pk9YGZj+1cHqfwKYs+PRDbgZGAu0VztDdYLpFg/TKxlMx/QJloHpXz2s/idAFpydPsCDwCfAs8A+wO50rDybAncC04HHqpy/WsV0i4fplQymY/oUKwPTv3JY/a8Qje7s9Ab+iSrN7sBU4A5gc7zK0wTMRRXslqrnsDYx3eJheiWD6Zg+xcrA9K8cVv8rSK07O92AHyEv9jXgY+ADYBHqviuW/9nAfGCSc/19wN+B1cA7zjkHACcAR6MK1QbskdgvqD7lagamW1zdTK/S6lmQNHX8MrACDQn8JYH0qkEaZVDJepz1MrD6H5+vA78DVgKfAsuBVuArwRM7VTNXJXA88CsUgf4Q8BbwNbS2wG+Aw5xzwsYsewCHoG5AP+vp2CW4iNp3+uJQjmZgusXVzfQqrZ4FSVvHFmAHlN+9K5B+JUijDCpZj1vIbhlY/Y/PLmgYrztwF/AS0m8SMBI5hmvdk6thfJuRgMNKuPYV4HvIezsZOBf4IdAXRaAfS/5FlfYCNuBN03MZSHhkey3RTDqagekWVzfTq7R6FiRNHfsBE4H7gWfQg6da03mbsTIAK4Osal8Ov0SOzkTU0zUVGAFcg2KfLvefXMjZGYJWavwv8i7fBC4ock3SPAjcA/wvsH818Gvn72F5rm0HNkbBXC5DkdfallgOxUHA3cAY1KX4KPAh8DSwX8LfVYxyNAPTLa5upldHotazINXUMcj1KBbiDGTsQQ+fIAtQPoMPLzeOoh24ojJZDCVrZXAmyuOZedLog4YyHqlEBvOQVBnUuvYui1Fe830ermhOPXYGDkXDVrMDxy5GdnE0sKW7M5/jchmqMF1Rgc0BtgIuBc5PMMPl8LmzXZ/n+FJU8Wei7q4j0FQ9SLbyXIqcQtcDvwvddH8GBgB/Q6te1gLFNAPTLYxCupleuUSpZ0GqpWOQk4DhqJX4IgoOhfCu/LPRQ+0y9GBymYkc0DmodVkLNGIZLHK2++ZJ5zpULhOSzmCJxCmDWtfe5U5gWsjnLef4QxXLaUdGONsF5Dqa65BTtgW+uhIWszMFOTRXohvXHWu8AbUgz0DdQ8EvqCadgFOdv+/Pc85KFCA2HfgB6h68CbUKXk0oH6NRb9dzqMIMBnoB5znf2xk4CjgFmJHQd5ZKFM3AdAtSTDfTqyNR61mQaugYpDPSay2KWQCvZRtm7JehGTBjUJnMRWVwBnA78LMK5TMujVoGT6EA4MEh6RwPfBu41nd9msQtg1rX3mVmyL4ZwI7ofrikwPdNRh0oUWkjf7B0H2f7Sp7jr6Ken94oyDvH2dketSCXoLFHf1BVGwoA6ovG9N6MkemkuQJNzZuPWrT5uNX5+LkooTx0QhXzM2AUsAZ1O4LXArkXPYR6JvSd5RBVMzDd/ETRzfTyiFPPglRSxzCmIZs3AS27D17LNl83/gVoNkwLmsFyOfqdo0m3AeinUcvgc+AJNJy7PXIQQEMVV6PXJ1Qyr3EopQxqWfswmtAQ0mnO9nQKB2JPBnaKkb+byO/sdHG2H+Q57u7v6u4IDmONwqs4YTfuh852Q54vWE7uGN7vnWMPhRybmyedQkxE3u5LyMCkxQgUvf5X1OIGDTG043U7uhp+XCCd5WRHMzDd4mJ6VYbdkHF+Hi+2AvQAXQt8Aw3dB1mBprbuhIZNHkMxPJ9F+M7lWBn4KaUMFjtb/1DWRShA+BzyP/xclmNlAKXXf5eNkTanoVGgCRSfcdYTOUhRP82Rf00uTc72izwFe3aOQoZzfp4EdkAOz8o8x1vJ7aYa4KR7E6poftryZjWc8cAs9Hr7g4F/x7w+SQ50tvf59u2Fus/WOf+7MRSFuiFbyY5mYLrFxfSqDLOR/ZtCbuPtWRRUOoDwYNf3fH+PJfobp1uxMvBTShm4zs5gFK/W17l+CdKwGK1YGUB59X8T4DbgONTDOa1CeSyE69R2yXN8q8B5HZydTmiO+hrCb95vAduiLvN83bWtIfuaUUWaiwIsS2UymlL2HKpE75aRVhLs4mxXO9teaCEj//jsMGe7sEA6rSH7mmlMzcB0i4vplTyn4A0FLihw3t7kGvtRKG5hNbKHk1DrNgqtIfuasTKIUwaPoda627NzPeplGE+09YRaQ/Y1k60yKKf+bwbMQwHUZwFXxfjeySQXs/Oys+2d5/g3ne0XMT1+Z2c3NO3tS2h4K+jQuNP9boyWz0Q5B42BtqEgtDUh50Sp6EnR5Pt7C2c70Nk+5Wz7oiGIR/EKpppE0Qyqp1tT4P961i0NzepZL6iNlxU2oRbfDBT/cQvh+eqJHlbBuIXDUev/eaT5I2j13FloyCItslQG76NZQ4PQTKKD0aJ+T1cmu5GpJbtRiC6Urv2WaOmL4cA4pHscJpNczI476+tQcv2VzmhBwY+Bx92dfmfHNaJd0eqD/qGs8Sgo7360pkA1uRBFeC9FPyxft2DwYVoqPVAl6I4qxDTUXRpkGWrlnQD8ES96/SlUWeahKYeTE8pXHKJqBqabn2rWtSzpBcnVs3K5BPXIXIkeUGEMQoGw/hkpQ5DWK9BvfQ/9/jvQQ+7oymS3KFkqA5dFaCG8G5BTcUEF8hiHaj+jyqGV0rTvgnyCwagn7Obcy4rSs4Rr8vE66pU6FPkn1/mOTUOO2Q14ccahzs496Ka+Dd3QByIv6UnkSVeTMagSbUAt14kh5yyntCCyfKxHXdPL0INoKXLygkN7v0Xjnd8HHkAPL9D005FoXHMUXgu8WqShGZhucTG9PCYgg7VrGfmJksYezjlvU3iK7HPod+2KXsLYGw3ff4Ba7auc8+Yhu3gUspOPlp79kshSGfiD7xcDP0Gz4aaQblxMUmVQDf3L0f42YH/0otKd8aaq+5mO1gqqFuPQsOa1qCfqReSMDUfDVx3WBAw6O58BJyJP9VS0ZPQbyHO+Cr12vpr0crYbk7/l+jDJVqRVeMbsXdRtug3eokkua1CsxNVoKqS7UuNwFEx6KQpSqzZJaQamW5Ak65rp5dGf8hdOC6YxE5XBEb59blDmJHwtvhA+QcHefYE90QKO7cB3UIvSz7nICZ1B/sXuKkWWyuAfvmNvONsnUGMgTZIqg2roX6r27nR/UFxv8P1dIBvWUlq2S+Z11At1CWr4HY5s6rWod6eDE9zU0tICKqh1yDMaSOMxB7UCRsW8bhAaauhH4fHWXsC/gD9Q/d6vSmK6xacUzbKsF6i1+CfgFwmm8TAKNr24rJxlh3oqg7vRA3xf9CBuBOpJ/7rEXWenH+quqnZXeLUoxWvuhsYlx1I8sMwN5Eo7SC5pTLf4xNUsa3r1Qe8T+gRNcd0HLb7W5hw/HnWF+wMZZ6GW5lcjpLEJ6qE+CK2/0o63UJohCum3Aq0I7WcAKpN+EdOoZBmcBByJgmPr1dEpdg+4by4Ifi6OmIbdAyG4zo7bm1PPRtQlCWO6KXoHyHQ0JliMLDyEohjBrOlWrtHKml69UevzWaTTVBTguzmeZvOc427Q6VloaH0kiiEslsYGFEwMGr/fDq8L3iiu3xK0zIifa1CP5QsR00i6DHZ0vmMOWgDweeDnZaSXJlHugdlIM/czCy11cGvENOweCMGN2QlOZ61X3EowFwWw9SHcmJ6DjOmP8Yzp/siYNjnXP4iGFqLgPoTaCp1Uw0TRrZgRzJpuUTSbTcex+qloVtWtZE8vkB7zUcwAwGvovTWHAe84+9rR+6buQ2Py56Fp3q/HSGN7NCz/BLUx3beWKKbfEhT46XIs6q08LkYakGwZjEQNgv+g+KnJRF/IsdaIot06vAVDz0PvyhrmnBs1DbsHArjOzunOp95JwpgegB5Iz+BNJx1N4W7A7yaS+/SIolsxI5g13co1WkPIll49gEPIDW5cT67ztgAZ6cvQb34yZhp7oVluZuQ7EkW/x9FklK1REOuVKAB0bYw0INkyuJF01ndLmjj3AGg20ThkM9zF8eweKJGwt57XK0kYU9AaDsF3hjUyUXUrZgSzpFsSRitLeoGM7wZkgP0MJHcV1xHIkd6IjqvQRk1jAPU71FdJoui3FMV7DELrrHyOHPs4aYCVQRhx7oELUY/xULwenThpDMD070AjGdtClaAtsC+fMc0iUXXzG8Ep5BrBLBGnrl2I1sQZim/p8gzSjmZ9burbNxQ9UNt8+/qjxRXHoVk3l5eQxh6ox8zoSBT9PkUPySNRb+RZ6F6PkwZYGYQRVbuLUIjFMDo6OnHSMP0DNJKzk4QxzSJRdStmBLNEEkYrayxFdWgmet/XEXirsLY5253Q0OAMtFT8RWhtmwNjpAGya3uiuIWuCf+OeiaqfkvQWlFL0GKKpaRhZZBLFO3ORwsTnoh60Ld1PpvFSANM/xwaydlJwphmkag3DxQ2glkiCaOVNVai6fWHoWHjs9E9+BGaCbk1WkH6XrwGyDNoQsH0iGm4nA8cg2YQZr0x4yeqfm3oXUPB2Zdx0rAyyKWYdk1ollk3tEr0Kt9nv4hpuJj+AdxFBRuFk5Fh7IyGGB5BLzDtjLzbxc6+n/quuR15v0PILoV0879gbQxasbQ/mv6ZZQpp1o5mjmwVct0IvJfYGUYt8gAach2fdkYMIykazdkxKosZQcNoTDZC64yNRTNz+6FXmBhGQ9BIs7GMyuA3gruj6dOGYTQWB6E1n15Gy0qYo2M0FObsGMUwI2gYjc9CGiuG0zA6YM6OUYyFmBE0DMMw6hh7iBmGYRiG0dCYs2MYhmEYRkNjzo5hGIZhGA2NOTuGYRiGYTQ05uwYhmEYhtHQ/B9IsDVANryMHAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ + 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay + 2 \\frac{d^{2}}{d zd t} Az = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) + 2⋅───(φ) + 2⋅───(φ) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) =\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz \n", "\n", " \n", " \n", " 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAApCAYAAACIn3XTAAAPUElEQVR4nO2de7QVVR3HPxd1+QoxMVQMhTSumgYo+UhFUDMVrZaPzAd6l1TLN9fUJB948bFQIb2oZGYWStqq6KGpmaYgoqiEXhR8oBTLWIIKkcsUH+Dtj+9MZ+65c86Z55k5c3+ftc6ac+ec2Wff72/P7N/s/du/aWpra8MwDMMwDMPIL72yrkBBGQDMBl4CFgLHZFqb4mH6po9pnB2mfX4wW2SP2cChyUbYUmE7oB9qXP2ABUAz8EGWlSoQpm/6mMbZYdrnB7NF9pgNHGyELTnOAV523q9AjQvgbWANsHUWlSoQpm/6mMbZYdrnB7NF9pgNfDCHLTmGAB0++4cDGwH/qmttiofpmz6mcXaY9vnBbJE9ZgMfzGFLDr8G1he4CxgLdNa7QgXD9E0f0zg7TPv8YLbIHrOBD+awRaMZeAz4EHgR2BvYna4NbGPgj8Ak4Kk616/RMX3TxzTODtM+P5gtssdsEBBz2MIzGHgWNazdgfHA74BNKTWwJmA6aoQz6l7Dxsb0TR/TODtM+/xgtsges0EI0nDY5qDhyv1SKDsp+gLfRR7768Ba4F1gLhpurabLNOBBYJxz7APAo8BK4C3nO/sDJwDfQo2uA9gjQj0/AyxHev4pwvFZEEdbqK++YBqbxv7E1bgS9dbeD7OHMFuEo6g2yAOfB34BvAl8BCwD2oHPer+0YcI/2gsYCqyntKojjxwP3IpWn8wC3gC2Qfldfg4c4XynfJ58AHAoGrL1so6uw7dzScYZbgO2d+qxZwLl1YOo2kL99QXT2MU07kocjSuRhfZ+tGH2MFuEp6g2yJqd0DRvP+Be4BWkyTjgcOSwrobkRRgM9EYJ7tLOkdKCGsbICMcuAb6BvNqTgR8BpwO7oNUnx+KfnG8Y/s7oXvivaInDbsB5wEPAC6hxN8JS5qjaQn31BdPYS1E1biHadSKOxpWot/Z+ZGmPFup/za5ET7ZFC/k4J/JggzzwE+SsnYdGEccDBwM3ovi+a9wvJu2w7eVs/162/2HUQMqN6c5NdwLXJlyXajwG/Bn4tGz/SuCnzvuRPsd1AhugAEiXg9CdUUeiNYRbkD4/QCczqIGXUxRtob76QnCNIV86m8bpE0fjStRbez+C2OMCVNcLKpTRjKZt5qRRwQokbY9GsQXAk6i+lV6Pp15TURQbjADuA05DU6tPAO8Dz1P/UK4vAIehKdBpZZ9dgeo1Btgc6uewXYSMfDUykMsUJNrtyKvMA58423U+ny1AF6opaBhzNFpmDMk2sJOAUcjzfhkFZIL/kHlRtIX66QvhNIbG0dk0Tp9aGleintr7EdQec53tvhXKuRnZ55ykKxiRKPZoFFuAYsYm+rzecD6flWpNg9EoNrgKPebKHcW7F92A/AGFc/0VPVmhXhzsbB+muyP8HnLWN8M5F5OOYavksC1EqztOQ97idOASdGfxW+CMhOsRlQ2BU533D/l8/iYKrpwEfBv9X3eiO9HXEqpDb2AymrNuc/a5d19+J3NRtIX66AvhNYbG0Nk0Tp8gGleiXtr7EcYez6GA8n18yjke+Bpwk+f4LIlqj0axBcihKWcysAM6R65MtnqhaRQbjAEuAxYhZ3kfYBC6xkxCdvkmcArS149WYMsQv9lB9cUkzc52SYXPX0MjcIOBR5N02JrQcO46/E/ky9BKjza0MuYa5M2OobtnmRXXoqXFD6K6+XG38/IyIcE6TAT6o7vXNc4+9+6r0lRSUbSF9PWFaBpD/nU2jdMnqMaVqIf2foSxxyfAfDR11B91rKBpmRvQ44HqUecgxLFHI9iinCY0dXamsz2X7JPINoINNkRO2cfAicAqNP0KpRHl+5HDNrBKOa3AjiF+906qO2x9nO27FT53928J3adEl1F9rrz89SvPsc3IQ12EEuCVsxwtU90RDak/hWJVPq7yz1Sr1y+dz2b5fDY9QJnlnIc8+1dQ55AFX0In4GJKMQGgC+ZqYGdgC5/jktY2qM2DkgdtXaJqDPnW2TRO/zqRJ43DEMUeTzpb77ToBBRwfjGVOxiXZfSMa3ZY4pwbGyCdzgSuRw5fLWdtGXZOgKYetwf+gnwU0IxgJ6XpV/eGcG2VcgYipznoqyVmvZucbSd0nxJdir+zVYk3Pe8rTYd6ecfzfizBV5K2030Ycijyhu9EjdJLR8ByXc4GpqLVrYcA/w55fFJMQzY5H62e8fIiCugcin+wb1Rt49g8CHnR1iWOxpBPnU1j0U5614m8aRyGKPZwHbZ9UHzPLs7x85CWtWinZ1yzwxL13NgIuAc4Do0+Twz4e+3YOQFwoLN9wLNvGJpyfM/5241dS3tK3It749OnwudbeL9X7rAdEuOHazlsJ6K5+JXAtijHyJkBy2732deCGt10FEQYlVa0fHYR+v/fjlFWHE6hNET7cJXv7Un3kzmOtnFsXotW8qGtSxyNIZ86t2Iau7T77Gsh/nWilXxpHIao9ngK3dW7I2y3oBGeswk2Bdfus6+FYl2zwxLVFpsAM1FQ/oXAj0P8ZrvPvhZ63jmxk7Nd6WwHoaS03pi7kc52dpVyWkk2hu1VZzu4wudfdLZLINlFB9UctiORN78YDU3OQRmTp6Kh1Ky4GM2/d6BA2lU+30k7PqAJedGTUezIjAq/ORCdGOUxDqZtMPoQXWPIp85BNIb66Wwa54e415U1aPXicLSi8RCUNPX5dKobmEa0RxxbbI5SUIwCzkI2yJpGs0GT5/1mztb1V55ztruga84TlJwoP1pJNoZtlrM9DIWoeeN0e6OkuWuBpyE5h81dcPAxpeBJlwPQ3cFyp1LvAJej54VdixLFZcHlaHXNAqdelYZzmyrsD8oAdIL2QyfrRDTF4OVKNJpwPToZ/BiOAoG9q4h6urYuQTRuJ5rGkE+dg2oMyehsGqevcdJEva64zEXJXW9DnfJlKdQxDI1sjyi26IMC+fdBo2J3+R9WVxrVBgvR6P0JwG8oafwccpRnogWTrTXKGZhwvZai0dbD0Oj1zZ7PJiKH/TaUj42mtra2JH60Gd0BL0CNzmUISuq3Fl2Ql3o+m+98dwTyasPSgoInRxF+WPc0NBy8HgnkF0C7jGiBsOVshzq5hc52AdLLjcvZAzWaFcCuOIbxYRPgv8773mgINS1t41BPbV3S0ngt6bbhqJjGwWkh2nUiSY3PQRfjXUP8ftwy4tjD5VRK8WrfQ48fikML+bhmx7VHvWwxE406P4uC5f2YhHKZhaGFnndObI2mb7cB/oZuQJvRDeHhKEbwZLrfhNaDnej6aKqXkZM+Ck2FfhXn0VRJjbC5zwKb59m3M1ri2wl8na4XYdBjLR5Bw8SVEjSmxSBnuwGVPerHqd3wgjSYFc4LNM+/BjUeN+mhG4Q6jsonMihg/TU0dPtlZNierq1LWhqvJp9tOCmNIbjOpnF3gmo8hPiJQMOWEdUez3g++6eznQ/cEeK30yBP9qiXLUY4+/em+/M2QedhW4h6xCVPNvArYwq6jo32+e4qFKN2A9J1c2f/KLQQ4Sq0eCILlqKb0iuR83gkutbehEbZ/j+KmdQI2z1ouHE0GsLtKdyOckWd6PxdrcGAjDIDTTPkZX4/r5RrGxTTOBxRdDaNw/Es8HvguozLCMt96Fq2L3LaikJcLbOwRdFI45x4HI0YXlHjuEHAP4Bfo/jMhiGJR1MNQ0uNXydaIslGptzD/wqVV8n2RTEIY7FOLghR7sBM4/CE1dk0rk4zeubihyied2+UVLTD+Xw5enKDl6FoWmu3gGUc73zfG/w8FY3OfC6h/+Mk4GgU5N7Izlo1LcfjnwPxioDHQ31s0egkoWG1MjZC8fMjUK7ATrrH0ntxF3VkvYAmNFEdtl5oKHYGmntdD5xO97wyRSJOg9kYPQ9uEtLL6EoSnZxpXJtaOtfqwEzj6gxGd/0vIl3HoxiZTSlpPA/d2Hm5EY10vhSwjJnO5+4igAuB76DpFG8Ou7Ds4Pze7SjGaTHwwxjlZU0tLaeh2Ez3NRWlfbg74PGQni2KQhIa1ipjPYp9BcV+bUdpOtmPhnXYosaw7YYck1XocQ5Xo2DkouI2mOnA9ykFK5Y3mGdQg3mDUiBok3PcY8jBNbpSS1uo3cmZxrUJovM0usafjEerqu7GNA7CNBQSMs75+3XgUeAI4C1n3zyUnsHlWDTKeVyIMjrR8w8fQPEvl6CUBOXxf2E5HDnj/0Exsq0ET1qcR4Jo6SZNvQQ9z3Kk872gx6dli6KQhIZByuiPbDmf2iP/rsPWEeH/yZSoDtsikplObRTiNJj9Uaf3AqXUBGOoPmTbk0iikzONaxO086rUgR2AaVyNAcChdA8OX0fXjuFplPh0KxSAfj0KNl4dogxQKoD56Gb5KKo/YSYoP3NeRSCMlpei68tISg/hztoWRSAJDYOWMQwNGgUJ0zgqwHdySZKJc4tK3AYzl57l3IYhiU4OTONahLlwgn8HZhpXZxgaaS+fadiLrlntF6DwieEoF9QnyJkOUwZoBGIIsknes8xnQVAtL0cjzgdRGlkLczyYLSqRhIZByxhKA05xhsUuwLWp1mA6PH8PpQc0mIQJqq23kzufrp2cUZugOoM6sDNQB7YEIyidKN3Bxp59ByGnrMOz7yN0nTgajWJeiNpzmDKGoHxRZ6GVnNck8y8UiiBaTkD55UbS1VkLejyYLaqRhIZBy9gDjf4XGnPYamMNJj2S6OSM2gTVuVoHZlRnAWqnU1AizNGUMtN3lH13Hsp9Nw/FAIcpY0c0tT0ZJbWdgPLXHYjhpZaWlwLnoeD299FTCLZFyWuDHA9mi1okoWHQ86oXyl3Xn3DP+mwozGGrjTWY9EiikzNqE0TnWh2YUZ03UaqTI1D8zUWoA/oApSfw0oGeGVi+8rlWGVuhh1XfT2kU4gW0ym5Skv9MAaim5eto9Wtf4ElKSaFXAPsFON5sEYwkNAx6Xl0KHIMyChR2lDOpxLlF52TUgHqjaaU5wAXO3596vnMdcthuRc6FUZsg2oIei3IHGj5fXOc6FoFqOneilYFb+Bx3MKUHFBvJ8AiabrZrhGEYgTGHzWgUrJMzGpleKAnoWOBclBppTaY1MgyjobBVokae8XZyu6M0E4bRiIxAOexeRWlpzFkzDCMU5rAZecY6OaMozMZihg3DiIE5bEaemY11coZhGIZhnaFhGIZhGEbeMYfNMAzDMAwj55jDZhiGYRiGkXPMYTMMwzAMw8g55rAZhmEYhmHknP8By/mw8xg6BEIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAAnCAYAAACylRSjAAAPX0lEQVR4nO2debAcVRWHv8dSrCFokNWwiCaAQBLAsAghAUTCohSLyP4KRNnzEJDI+sJSARLhBYiIKAYQLCGKICCLkBACEWLghX2LppBKwiZSyE54/vHrdnrm9fT03j0z56ua6nm9zX2/c7vv6XPPvd3R3d2NYRiGYRiGUV6WKboALcpgYCbwHDAf2K/Q0rQepm/2mMbFYdqXB7NF8ZgNHDoswpYJ6wBrosq1JjAPGAp8UGShWgjTN3tM4+Iw7cuD2aJ4zAYOFmFLjxOB553vi1HlAngDeAdYo4hCtRCmb/aYxsVh2pcHs0XxmA18MIctPYYBvT7rtwGWB/6Va2laD9M3e0zj4jDty4PZonjMBj6Yw5YefhVsEHADcDTQl3eBWgzTN3tM4+Iw7cuD2aJ4zAY+mMMWj6HAg8BHwNPASGBzqivYCsBtwETg0ZzL1+yYvtljGheHaV8ezBbFYzYIiTls0RkCPI4q1ubAeOBWYCUqFawDmIYq4Y25l7C5MX2zxzQuDtO+PJgtisdsEIEsHLZZKFy5fQbnTotBwA+Qx/4K8CHwLjAbhVuDdJkK3A2Mc469C3gAWAK87uzzTeAgYF9U6XqBLWKUc1XgNaTnn2IcXwRJtIV89QXT2DT2J6nG9chbez/MHsJsEY1WtUEZ+DJwHbAI+BhYCPQAX/DutFzKP7oMMBxYSmVURxk5ELgajT6ZAbwKrIXmd/kVMNbZp7affDCwGwrZevmM6vDtbNJxhruB9ZxybJXC+fIgrraQv75gGruYxtUk0bgeRWjvRzdmD7NFdFrVBkWzMermXRO4HXgBaTIO2AM5rG9D+iIMAQagCe6yniOlE1WM0TGOfQn4DvJqDwV+ChwFbIJGn+yP/+R8I/B3RrfGf0RLEjYDTgbuAZ5ClbsZhjLH1Rby1RdMYy+tqnEn8e4TSTSuR97a+1GkPTrJ/55dj3a2RSfluCbKYIMy8HPkrJ2MoojjgV2Ay1F+30Xujmk7bFs7y7971p2KKsepdY4ZikKAs1IuSxAPAn8GPq9ZvwT4hfN9tM9xfcCyKAHSZWf0ZNSbagnhKtR3/2N0MYMquJdW0hby1RfCaQzl09k0zp4kGtcjb+39CGuP+1B5axtgN5+oD7g4myL6krY9mskWj6Dy1vs8lHlJRavYYBRwB3Ak6lp9GHgfeJL8U7m+AuyOukCn1mw7D5XrcGAVyMdhm+0st6tzzJXIaCemXJa4fOosP/PZNg81GpNRGHMvNMwY0q1ghwBjkOf9PErIhP4h81bSFvLTF8JrDM2ls2mcPY00rkee2vsRxR6no4b5QqS7y2TU0F2LIgFlII49mskWtwETfD6vOttnZFrScDSLDS5Ar7lyo3i3o4fBP6J0rnvRmxXyYhdneR/9HeH3kLO+Ms59Me0cNj+H7QmUnLitz/4HAt8CrqDyhFEkywFHON/v8dm+CCVXTgS+h0K516OowMsplWEAMAn1WXc761xtai/mVtIW8tEXomkMzaOzaZw9YTSuR17a+xHVHvPRiLwj0RP+NOBMFA26BTg2u6JGIq49mskWk33WTQLWR3Y5P93iRaZZbHA4cDbwDHKWtwU2QvV6IrLLd4HDkL5+dAGrR/jNXoIHkwx1li/V2f4yisANAR5I02HrQOHcz6i+qX4KzEVhyHWRkUAhvsvQqybOTbEcSbgYDS2+G3naftzkfLykWf4JSKcT0Ss4oPL0VRsubzVtIXt9IZrG0Dw6m8bZE1bjeuShvR9R7QFq3A5CTsWqKJfmXtTw1UYDiiKJPZrJFi4dqOvsOGd5EsVPItsMNlgOOWWfAAcDb6HuV6hE9+9EDtuGAefpAjaI8LvXE+ywDXSW79bZ7q5fHfp3iS4kuK+89vNbz7FDkYf6DJoAz8sjztLb3XEuSl48I6CwQeX6jbNths+2aQ3O58fJyLN/Ad2QiuDr6AJ8lkpOAKjxehv4KrBazTFZaBvW5mEpg7YucTSG8utsGmd/nyiTxlGIa4/X0NQCG6Au6UdRTtsnIX5zIe1xz45KXFuAuqanIWftUuTwNXLWFmLXBKjrcT3gL8hHAfUI9lHpfnUfQj4MOM+GyGkO++lMWO4OZ9kH/btEF9Df2Qpikee7X3eoi3sj3hb1FW8CnALMQR5oI3roH4Ycjrzh61Gl9NIb4pxeTgCmoNGtuwL/jnh8WkxFNjkFjZ7x8jRK6BxOdeJ1Um2T2DwMZdHWJY7GUG6dTWPRQ3b3ibJpHIW49gB40/P9aMKP/u+hPe7ZUYlri+WBm4EDUMRzQsjf68GuCYCdnOVdnnUjUJfje87fbu5a1l3iXtyH0IF1tq/m3a/WYds1wQ8HOWyPIg/RfXK+Cj0tnEC4cG6Pz7pOVOmmoSTCuHSh4bPPoP//jQTnSsJhVEK09wXstxXVF3NSbZPYvBFdlENbl7gaQ3l17sI0dunxWddJ8vtEF+XSOApJ7HEwyp9aAqyN5oU6LuTv9vis66S17tlRiWuLFYHpKCn/NOBnEX6zx2ddJ+13TWzsLJc4y43QpLTenLvRznJmwHm6SDeH7UVnOaTO9q85y5cg3UEHQQ7bO2gkzDZodMyuaAK+J1P8/Ticgfrfe1FS81s++2SdH9CBvOhJKI/nxjq/uSHSrTbHwbQNx0Diawzl1DmMxpCfzqZxeUh6X9kTRWCeRd1Js9As91NQ91dRNKM9kthiFTQFxRjgeHQ9FE2z2aDD831lZ+n6K084y01QPX+YihPlRxfp5rDNcJa7oxQ1b27oADRp7ofA3yA9h80dcPAJleTJWmajiQKvQQY+O6Xfjss5aHTNPCRWvXBuR531YRmMLtA10cU6AXX3eDkfPcFeii4GP7ZBSdn1pkRoR21dwmjcQzKNoVw6h9UY0tHZNM5e47SJe1/ZEUV0XkP/95tIi1tRQ71vNsVtSDPbI44tBqJE/m1RVOwG/8NypVltMB9FjA8Cfk9F4yeQozwdDZjsanCeDVMu1wIUbd0d9SRc6dk2ATns16D52Ojo7u5O40eHoqeueajS+XEElTyUY9CrLJLQiZInxxA9rHskCgcvRQL5JTMvJF4ibC3roEZuvrOch/Ryc0G2QJVmMbApjmF8WBH4r/N9ANWJkWlrm4Q8tXXJQ2Moj86mcXg6iXefSFPjE9HNeNMIv5/0HHHtMQRNxPohctwWePadi+7vo1AkIiqdlOOendQeedliOop0Po6S5f2YiOYyi0In7XdNrIG6b9cC/ooeQIeih5A9UI7gofR/CM2Djal+NdXzyEkfg7pCd8B5NVVaETb3XWBzAvb5p7OcC/w6pd+Ny0bOclnqe9QP0bjihakwi50PqJ//HVR53EkP3STUcdS/kEEJ6y+j0O2WwGOebe2qrUseGkN5dE5LYwivs2ncn7AaDyP5RKBRzxHXHrejrqxvU+2sgV5FdD/q2qs3wXFWlMkeedlilLN+JP3ftwm6DrsjlCMpZbKB3zkmo/vYXj77voVy1C5Duq7irB+DBiJcgAZPFMEC9CB0PnIe90T32itQlO3/Ucy0Imw3o3DjXiiE68cdzvbt0M24FbgWzU90sPN3UIUBGeVG1OWTZv9+O2gblqw0BtPZxTSOxuPAH4BLCj6HIZJqabZIThbXxEMoYnheg+M2Av4B/A7lyjYNabyaagQaavwK9SfNOwTYByVMtspNGPp7+N/Af9AFwCCUg3A06TZy7aJtGLLSGExnF9M4mKHonYsfoXzekWhS0V5n+2vobQFehqNurc1CnuNAZ39v8vMUFJ35Ukr/R6sQpOV4/OdAPC/k8RDOnu1O1tfE8ih/fhSat7GP+rn0UBnUUfTAvMjEddiWQaHYG1Hf61LgKKrnlVkfXRDXov7yZ4GfxC1oCUhSYVZA74ObiPRKSjtpC+EaqLQ1hvbTuVEDZhoHMwQ99T+NdB2PcmRWoqLxHPRg5+Vy9P8/F/Ic053t7oCM04Dvo+4U77xp7U4jLaei3Ez3MwVN+3BTyOOhsT3bnTyuiaUo3xKU+7UOle5kP5rWYYubw7YZckzeQq9zuBAlI3vZA93Y/4PyIroIP+li2XArzDTgh1SSFWsrzGOowrxKJRG0wznuQeTgpkE7aQtqoM5ADdQxVBqoHVADlYXG0H46T6U6/2Q8GlV1E6ZxGKailJBxzt+vAA8AY4HXnXVz0PQMLvujKOcBEc7Rh95/eBfKfzkTTUlQm3PW7oTR0p009Uz0PsvRzn5hj29kz3Ynr2tiXWTLuTSO/LsOW2+k/6QEpJXD1urcj5xTb57PdajCuLMj74u6igZSXWF2RHMYed+vejjBIdt2Ioy2oGHPd6Fh5W4D5XY/m8aNCauzy5loQMIYNC+RaRzMYPSgNpLq7txfOtvGOn/vgN7oMAgloD+HRtz1RDiHy6POvnsT/UX0rU4ULc9CDoM7Ki/K8UH2bHfyvCYmoDZhJ1qYNCfObVUGA7vRf5TOZ1R76CNQlLHWu59NOrmCrUhYbUFz1cxF0dy9qc4VNI2DiaIzVBqw0VQaMNM4mBEo0l7b07A11bPaz0PpE9uguaA+RRGEKOcANU7DkE3KPst8EYTV8hwUcd6ZSmQtyvFB9mx38rwmhtOEXZxRsRtwY4IqTK/n7+G0QYVJmbDagjVQSYii8znAsagBewkjLH1ouoMVPOt2Rg1Qr2fdx+g+sQ+KYp6GGqgo5xiG5os6Ho2qvSidf6GlCKPluSjFYjTVzlrY4yHYnu1OntfEFlRH/1sSc9gaYxUmO6yByoewOgc1YEYw81DDMxlNhLkXlZnpe2v2nYPmvpuDcoCjnGMDlM8zCU0wfC6aM62lu4Ji0EjLs4CTUS7s++gtBGujyWvDHO+lnj3bnbyuCZAvsyXKZVs9neKXD3PYGmMVJjusgcqHMDo3asCMYBahqU7Gou7601F9/QCNZvbSi94ZWDuVQaNzfBHlqt1J5aHlKTQoZ2Ka/0wLEKTlK2gk8iCUO7XY89k+xPFh7dnu5HFNuJwF7IemCGnZB3obdBCOQ9ENcQDqVpoFnOr8/blnn0uQw3Y1elowGhOk7erohjoL+JHnmFuQzjtihCVI5z40SnM1n+N2ofKCYiMd7kfdzXaPaA3MnskxDUNgDpthGEb2LIPmDDwaOAlNjfROoSUykmD2TI5pGBEbJWoYhpE9o9Acdi+ieaasYWpuzJ7JMQ0jYg6bYRhG9szEcoZbiZmYPZMyE9MwEiaWYRiGYRhGyTGHzTAMwzAMo+SYw2YYhmEYhlFyzGEzDMMwDMMoOf8DGaWzviV4HaUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay - 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay + 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅───(Ay) + 2⋅─────(Ax) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAApCAYAAABwf44kAAAPb0lEQVR4nO2de7QVVR3HPxd1qSlqaSqUBlmgpAlKvlNQwwdaLh+Z71tmZSpc85nPi4+FD9KLimZmQaat1LQsyDQVEcVH4FU0H0ixjAU+IHKZT8TbH9+Zzty5M+fMzJnXOef3WeuuOXdm9px9vr89s39779/e09bZ2YlhGIZhGIZRDvoVnYEmZDNgJvB34Bng4EJz01yYttli+uaL6V0ezBblwOzg0GY9Z6kzANgYFayNgbnAUODdIjPVJJi22WL65ovpXR7MFuXA7OBgPWfpcDLwgvN5KSpYAG8AK4CNishUk2DaZovpmz+u5qZ3sVjZLwdmhwDMOUuHbYHugP0jgTWAf+Wam+bCtM0W0zd/gjQ3vfPHyn45MDsEYM5ZOgQVrg2BXwHHAz15Z6iJMG2zxfTNH7/mpncxWNkvB2aHAMw5i89Q4EHgfWA+sAOwNb0L15rA3cBE4LGc89fImLbZYvrmTy3NTe98sLJfDswOETHnLB5DgCdRodoaOBu4A1ibSuFqA6aiAnhL7jlsXEzbbDF986eW5qZ3PljZLwdmhxhk4ZzNQt2QO2dw7XrZEPgu8spfAd4D3gJmo+7TWnpMAWYA453004EHgNeA151zdgUOBw5CBa4b2CZmPtcFFiMdfx8zbRHUqyvkp61LI2ls+mZPGhr7qaV5mnoH0Wg2cEnbFnmX/SAa0RbNaIcy8FngF8AS4ANgEdAFfNJ70uopf2k/YDiwisqMizJxGHADmhHyEPAqsAlaS+XnwH7OOUFj3JsBe6NuWC8f0btLdjb1O72dwGecfGxX57XyoB5dIV9tXTppHI1N3+ypV2M/UTRPU+8gOmksG7ikaYsiyn4QnTSeLZrRDkWzBRqq3Rj4A/Ai0mQ8sC9yTpdD+iIMAfqjBeSyXJekHRWIUTHTvQx8HXmuRwE/Br4DbIlmhBxC+KJ3Iwh2OrcneKZJUoYB44B7gWdRoS77VOJ6dIX8tHVpNI1N32i0k+y5APVr7Cdvzf0UXcbbKYctirYDNK4tms0OZeB65JiNQ72DZwN7AlejeLxL3RPTds62d7Z/8+1/FBWOsL+HU85HGA8CfwQ+9u1/Dfip83lUSNoeYDUUrOiyB2oFdaeWQ7gOjbv/CN3IoIIdRDPoCvlp6xJVY9M3Ga1Yhv3krbmfODa4D+XXX9G68T89wGXpZzGUNG1RtB0gui1OQ/k9LeQ6Q9Ew2Ky0MxhCM9hhd+Ae4Dg0PPoI8A7wNPmHXn0eGIOGMaf4jl2I8nUMsA6kP6wZ5pzdDdwfcP63gc1Rl2nRrHS2H4Ucn4tujEnAFaj1cL1zrDulPBwJjAauQYvyzXf2b0ewfs2gK+SjrUscjU3f+LRqGfaTp+Z+4trgDGAecAkaalnl7J+EKrWbUAu/DMS1RZF2gHi2mO1sdwq51rXIwTk55TwmoRHscDFwLhqWPR+V7XWBu4Cjgb8gh3dpRt/vZ09nex99Hd63UUN1DLL/A3k5Z5MCzr0SPXynAhelnI+4rA4c63y+N+ScJSgIciLwTdQ9Ow21chakkIf+SJPlKD4BKq2ssBiFZtAVstfWJa7Gpm88WrkM+8lLcz9JbPAMmhl3HGq5TwXOQT09twM/yCarsUlii6LsAPFtMQ8F3e8YcOww4GvIyXs24HieNIIdjgHOA55DzvGOwGBUrici23wDOWlXhlyjA9ggxnd2U32yx1Bn+3LI8QXIORtCys5ZG+qq/YjqhacNdemd6GxPofhF5i5DU3tnIG86jFudPy8XpJSHCcBA1Cpa4exzW1lhwxFeGllXyFZbl3o0Nn1r0+pl2E8emvtJaoPz0Cy5TtS7cCn6vcfQt5VfFEltUYQdIL4tVgJPoaG4gcihAQ1zXYVeZ5RHvmtRdjusjhywD4EjgGVoCBUqvZN/Qs7ZoCrX6QA+F+N7p1HdOVvf2b4VctzdvwH0jTlbRPX4D//frz1phyJv9Dm0wFwQq6FW2Ymoa/Nkaj98g/L0S+fYQwHHpta4np9xyHt/ET2IiuBLqCJ6nspYPujmXA58AVivSvq4ui4iuZ2jUgZdvdSjcVrlNk2Nm0lfSKcMp/lcgPJpXIt6bLAYTef/HBo+ewzFoH0Y4XsXYbbwk9QWjzpb79DmBSgo/yzCK3aXRTR/fVmLPdHM2D8jfwQ0qtdDZQjVbXC8V+U6g1CDMepfe535bnO2PdA35mwh4Y5VEEs8n8OGNF3WAG4DDkWtswkRv6OLvl2Lw5HXOw0VRi/dEa8LcBIwGc0u3Qv4d4y0aTIF2eJUKvEeLvNR0OVwggNBk+haj52jUBZdvSTVOGm5zVLjZtIXkmncRXbPBSinxrWoxwYAb3o+H0/0GfddmC38JLWF65ztiGKjtnSuMQdpWYsumr++rMVXne10z74RaNjwbef/Ac4266FtL65jvX7I8fW85/mds73q+OJqztlawJ3AWOB04CcxrtsVsK8dFbapwMwY1/LSgaavPod+9xsJr1MvR1Ppcr2vynnb0fdGTqprPXauRQfl0NVLUo3rKbdZadxB8+gLyTXuCtjXTv3PBSinxrWoxwag4Z9JaCbepmjdpRMjfndXwL52zBYQ3xaPoZ4Tt+fsOtSrfBLRhvi7Ava10zz1ZRS2cLavOdvBaIFXb3zcKGc7s8p1Okg35uwlZzsk5PgXne3LkO5szTDnbB00lXU08EO0qF3RnIXGzbtRkOWykPOyjndZHwUjrkQBuUHfNwjdDP4YBdO1Nm2oNZJEY9M3GlaGi6ceGwDsj3pVnkdDQrPQyvCT0fBVUUSxRZnsAPXbYgWa1TkSzfTcC90XT2eQ16g00j3R5vn8CWfr+ibznO2WqJw/QsVhCqKDdGPOHnK2Y1BImTeWsz9agPY94HFIzzlzJwN8SCXgEVRQZ6Au2nb0lvmiOR/NAJuLRKrWNdtW5VgtNkM358boRp2Auqm9dKFW6hXoBghiJAoS9c7uaWVdvUTR+CLia2z6CivD4aSlcRp0kcwGALuhnsvF6De/iXS4A1XIB6We22hEtUWZ7AD12cJlNlq49kbkCJ2XbhZj0Yj3xDOoJ/hw4LdUdJ6HHOM70cTFjhrXGZRyvhaintQxqCf0Ws+xCaixeiNa74y2zs7ONL50KGphzUUFz2U6apU9iYLzgpiI1j+JQzsKchxNvG7a41DX7iokTFBw5SKSBaz6GYAqtWec7VykkxvHsQ0qLEuBrXAMEsBawH+dz/2RZ52VrknJU1cvWWl8J6YvNF4ZbifZcwHS1fhk9PDdKmYekqSvxwbbokV+30NO2kLP+U+hZ/nuqIchLu0Ub4s87QD12cLLsVTiy05Ar0qqh3aKry/ztMVGaPh1E+CvqJE5FDU49kUxrkfRt6GZB1vQ+/VNL6AG6mg0nLkLzuub0uo5c9+XNcezrx+6sd3j/ndqgcatO1PKQxQGO9vVCPeaHyadwraUyuJ2b6Du6o3Q+8mgEjA6nvCbGBRUvgB1xX6ZylRraE1dvWSlsekrrAz3JqrG21Lfwppx0ie1wXK0DEIPsA+9HTPQq3ruR0N0YYuiZkVatsjTDpDcFk/4jv/T2T4F3Bzj+9OmzPfEJPQMGxtw7jIUU3YVes6s4+wfjRqFF6NJDUWwEDV6LkKO4v7oGXsN6j37f89kWj1nt6FuxLFoqKIVuAmtB3SE83+1wjISDQ8Noxzj8mXGr2tUTONomL7Z8yTwO+DygtIbolHtcA+qR3ZCDlozkLYtHka9gBfWSDcY+AfwGxTD1zCk8W7NEWgK/CvEX6SxkfF78l8heKbqhiie5nisUotCkhaWaRwd0zddhqJ3EL6P4m13QAt0dqNXHgWtaXdhxPSgleE/oHdg8mTU8/Lp9H9Ow1JLx1q2qJV+MXpjgpfhyDbDUvwdRwIHokkAjeqYZWmLNVBs++5o/bceese5+3EnXRQ5oSIRSZ2zfmjI4RY0froKva3ev55Ls5C0sKyJ3h04Eelk9CaNisk0DieNCsf0DWcIatHPR7qejeJa1kYaT0Fxe+7fZDS9/9aI6UHxj/OpBIWfDnwLDYl41yVrZaLoWM0WUdLPQQ1wL1ejnuh6h8g2d77zJhQb9jxwZp3XLIqsbbEKxUeCYrUGUAmRCKJhnbOkMWfDkCOyDL0G4RIUNNyMuIVlKvA9KoGF/sLyBCosr6LKrc1J8yByYo3e1NIVVDGdhSqmE6hUTLugisk0DieKvrUqHNO3OlNQGMd45/9XgAeA/YDXnX3uopfnoHcKjnLOi5q+x0k7HcWrnIOWAfDHiLUyUe0QZov7I6Sfg5Z7cTkE9UIfmkL+90WNn/+gIPEOoi8AXDbysMVAJ/1T1O7Jd52z7gS/pVCSOmfPkc6QaCMQpbAFFZbd0FTeZ6lMRz+G6l2wrUQaFdOumMZhRNG3VoVj+oazGbA3fSczfETfiuBcpPMoKi89jpP+PvRsuQQ4gPC3sLQicXSEvraImv5xtEDyp1Cw/xUoqHt5HXl3+Znz1+jkZYsRqDMoSojFARHOKSVpLkLbjNRTWGbTOg5sXNKqmEzjYNKqcEzfcEagXnP/iMH29F4V/nzUc7kHlR6zOOlBDZJtkS3KvDJ7EcTRMcgWUdPPReErI9G6WStRA8iokJcthtOAw5RxsQdvdaoVlm7P/8NpgcKSIlF1BauYkhBVX2+FcypW4cShBy0xsKZn3x6o4u52/r8ADcePordjFjU9qOzfhXoY7gEuTSHvzURUHcNsETX9B+gZfyDqwT8d3S9GhbxssQ3qzW9qzDmrjhWWbLCKKVuswsmeuUi/SWhhybFU3nLQjYZsxqEYyXfQqvGbogVIo6QHTYSZgdYam4YqtX2ovNjZiKZjNVtESe8yB60ROAfFWhu9ycsW/dD6cAOJ9+7LhsKcs+pYYckGq5iyxSqc7FmClhbZDw21n4HK6buoN+BMtATJo1QW810K7Bwh/QI01HwvsonbKHkWTZKZmOkvayxq6dhGdVvUSu+lG70P0T/D2RB52eJc4GA027xpG+xpLULbzByFHob90TDRLOA05/+PPedcjpyzG1BlZ1Snmq4boJt3FvB9T5rbkca7YdQiSrkFvaLlZtRL+XzOeTSMRuJ+FLhuz3cjc8w5M4zWxiocwwinH1pT8XjgFLSM1IpCc2S0BDZb0zBaD2+FszVaZ8gwjL7sjtb5ewktNWOOmZEL5pwZRuthFY5hRGMmFpttFIA5Z4bReszEKhzDMIzSYg9owzAMwzCMEmHOmWEYhmEYRokw58wwDMMwDKNEmHNmGIZhGIZRIsw5MwzDMAzDKBH/A9YnlaLwpoacAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jz + 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay + 2 \\frac{d^{2}}{d zd t} φ = 0$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz + 2⋅───(Az) - 2⋅───(Az) - 2⋅───(Az) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ) = 0\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Maxwell_source_eqs = []\n", "\n", "for p in p4:\n", " Maxwell_source_eqs.append(euler_equations(add(\n", " product(vector_q(Dq(conj(φAxyz), txyz, conj=True)), vector_q(Dq(conj(φAxyz), txyz, conj=True, reverse=True))),\n", " product(conj(φAxyz), conj(ρJxyz))).t, p)[0].subs(simpler))\n", " display(Maxwell_source_eqs[-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Look at all 8 conjugates." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAN50lEQVR4nO2debAU1RWHvycQNQQlYowbKjEliAsgxBUFlyQaY9QoUVT0lWRRcSNixA0fLoUR1GdFEiNJRC1NRUks1xitCC5IEgQf7hqNRCkwijHGckPIyx+/7up+PT0z3TO9zEyfr2qq3+vpuXPnd26fPn3vubfbOjo6MAzDMAzDSIr18q5AAzAQWAC8ACwDvptrbZoH0y0eplcymI75YvrnS9Po32Y9F2wBbIYMtRmwBBgMfJRnpZoA0y0eplcymI75YvrnS9PoX9Sei9OBF52/VyFDAbwNvAdsmkelmgDTLR6mVzKYjvnj2sD0z56mbP9FDS6GAV0h+0cBfYA3M61N82C6xcP0SgbTMX/CbGD6Z0NTtn8LLjwGALcAE4HurCvUJJhu8TC9ksF0zJ+gDUz/7GjK9l+E4GIw8AjwCfAssDuwMz2NtT5wFzADeDLj+jUqpls8TK9kMB3zp5oNTP/0aJn23+rBxQ7A35CRdgamAncCG+IZqw2Yiwx6a+Y1bExMt3iYXslgOuZPNRuY/unRUu2/0WeLDACOBA4FdgG2AtYg8W9yXv+r8PmHgdXAeN++3wCHoKxbgNHAY8AzvmMmON/RjNSrGZhucXUzvWprZ0Hy1PELwEvod9wNHFFneVmQhw3SbMdFt0FLtf/e9RaQMuOAX6AM2fnAG8CX0dzeXyHRxxE+5jQQOAh1K/lZS88upidorR6cejQD0y2ubqZXbe0sSN46diDH2g3slkL5aZCHDdJsxx0U1wYt1/6zcHbtqMJja/jsK8B3gK2B44HzgZOBIShD9ijKLyIyAliHN23HZSThmbeNRDv5aAamW1zdTK/a2lmQPHUcCpwJPIjuCAeS3fS+dswGYDZoOe0rBRej0Upg/0XR0z+Bi6p8JmkeAe6ltFvpLeAG5++xZT7bDfRCyS8uY1BU1pVYDcV+wD3ASahr7HHgQ+BpYK+Ev6sa9WgGpltc3UyvnkRtZ0Gy1DHI9Wgs+8d43c0jQo57CNUzeLFwx8G7gSvTqWIoRbPBOaiO55QpYzDwKRo2yIqkbNDo2rssRHUt93rUPbBcoHA5MlB/JNAcYCPgMuDC2n9DonzmbNeWeX8JamizgO3RmNgtzntdCdbjMhSEuRHm3aiR/wEYDvwJb7wsb6ppBqZbGJV0M71KidLOgmSlY5DjgP2Bn6OFityx67Cu4XPRReRydCFwmYUCvjkoCa8RaEUbPOFs9yxTzs+QXU5PuoI1EscGja69y13A9JDXG877890Dw4KLySiAmImil58ApzoVAEU3eY8d9wZOdP5+sMwxK9Ec4EOAp5BjuBktk/r3hOoxAfXmPI/mIm8NDAKudd67G+gHnJDQ99VDFM3AdAtSTTfTqydR21mQLHQM0g/5uXfRmDN4d25hznUZytDfEekOcAHyiXcAp6RUz7i0qg2WAh8De4SUMw74OjCbnsmOeRHXBo2uvcss51j/qy+wDeq9u9Q9MBgkbInukBahsSN/EkoXyibtj8Zk8uRKNFXnAXTHVo7b0I/+IuqamoaEiJtBHUZvNM94DcruXY26scCLsO9zttsl8H31ElUzMN38RNHN9PKI086CpKljGNORz7sELaMM3p1buW7hi9AaBB3oDvkK9DsnpFjPuLSqDT4DFqPrz5a+/X2Ba9By2NNSqmdcarFBI2sfRhvq8ZiCgrqT8dU1GFyMxzNU2A/60NmuK/Nlyykdg7nJeW9+yHtzI/yAIGeiMbeX8O4e8uAAlF37R+A5Z99I9Lu6nP9dDT+uUM5yiqMZmG5xMb3SYSfgDNQbdINv/0p0J/dVNBQcZAXQCWyLuuGfRDkYayJ853LMBn5qscFCZ+sfGpmGevPOA96v8p3LMRtA7e3fpRfS5lTgKhRo95gRE5yKejhyVA+UKXArFGCsLPN+J+rZ8DPcKfdmZFg/XWXKKcck4Dr0uNkDgX/H/HyS7Ots7/ftG4G6sD5w/nfHwCt1a3VSHM3AdIuL6ZUOs5H/m0zpzdKz6M5xOOHJge/4/p5I9CdSdmI28FOLDdzgYg+UbzTE+fwipGE1OjEbQH3tvw9wO3A06sGbHvYFvQN/7466XcNOlq8Bm6Mu2HLdNJ0h+9qR4eaihLRaORuNMT+HjPZ2HWUlwfbO9i1nOwh1Z/nH18Y62wUVyukM2ddOa2oGpltcTK/kOQFvaOmhCsftRqlzHY/Gnd9C/vAsdPcWhc6Qfe2YDeLY4El0h+z2XFyP7qInEW09j86Qfe0Uywb1tP8NgHko4XQKcHW5D/uDi53QNJjPoeGSYADhTv+5sVKtU+I8NIbVhZJ2VoccE6VhJUWb7+/PO9uRznapsx2CurQfB17OqF5+omgG2enWFvi/mXXLQ7Nm1gsa4+FKbairdyYav7+V8Hpthy4OwXHnb6G72+eR5o8B30d3qi+lUuNoFMkG76FZDaPQTIcD0SJWT6dT3cg0kt+oxMbUrn1fNBV+f+A0pHtZ/MGF67T6AwfTc2hkEnAMulu6t3r9E+VilIG6BPgG5buZghevWhmIRN8MGWA66n4LsgzdxRwD/A4vu3YpMs48NAXp7ITqFYeomoHp5ifLtlYkvSC5dlYvl6Ieh6vQBSGMUShx0J8xPxppvQL91nfQ778TXVSOSKe6VSmSDVyeQAs//RJdxC9KoY5xyPoaVQ+d1Kb9xigm2AP19NxS+rGehAUX96KT6HZ0Au0L7IOmxxwXrf6JcRIy2jp0Z3ZmyDHLqS3pphxrUVfnMuT4l6CgKjhU9Gs0XnUkWhPenUFzCgrO+qCLwlKyJQ/NwHSLi+nlcTq6gdmxjvpEKWMX55g38U2ZC+E59Lt2RA+N2gENB7+P7kpXOcfNQ37xcOQnH6+9+jVRJBv4k5UXAj9Ez8OYTL55DUnZIAv969H+dmBv9GC1r+BNXfUzA63VAZQGF2uAY1EkdiJaAvR1FBlejaZgZckgZ9uL8ndmj5Ks4VbhOY+3UTfcpniLhLisRmPd16CVE/s6+/dHyXeXoaSerElKMzDdgiTZ1kwvj2HUv1BQsIxZyAaH+va5SWxn4c18C+MTlBw7BNgVrSPSDXwTeC1w7Pko6JtJ+cWd0qJINvir773Xne1iFHznSVI2yEL/WrVfjHwPKC8z+PwTkA/r8O9wn4raC2Wev4jXg9FKzEFR7vhqBwYYhbquh1J5vGwQ8A/gt2Tfu5Mmplt8atGsyHqB7oZ+D/w0wTIeRcl5l9RVs+LQTDa4B10w90QXvlagmfSPhLvOxVDU/ZF112pW1BIVDkDjShOpnojjJr7knVSUNKZbfOJqVjS9BqPnMXyCprztjhYb6nLeH4e6Vrf1feY6dCf1pQhl9EE9sPuh9Q+6ad7H2qdFJf1WoBVH/QxHNhkasYw0bXAccBhKJmzWwKLaOTCV8Od2XBKxjIY4B9zgwu2taGan5ZKE81ofraE+A019qkYRnH4Up1M03ep1EkXTawd0d/Us0mkqSojcEE+zec77bpLeFDRUezDKAatWxjqUfAlKPtsCr0vXqK7fIrTsgJ9rUY/cCxHLSNoG2zjfMQctePU8eixFMxLlHJiNNHNf16Gpz7dFLKMhzgE35yI4va1ZcUWfixJ+BhPuvM5DzusHeM5rb+S82pzPP4K6qqPgOv2uSgc1MFF0q+Z0iqZbFM1m03OsdSqa9XEbxdMLpMcDaMwX4FXgz+h5Cv9y9nWj53Xcj/IbLkDTPl+LUcaWaJh3MY0x/a+RqKbfIjTN0OUo1Bt3dIwyIFkbHIwC8P+g/Jezib5wWaMRRbsP8BbIuwD4Hsq7ejVGGbmfA25wcYbzanaScF77oAvAM3jTyyZQuVvp24nUPj+i6FbN6RRNt3qdxGiKpddA4CBKk8HWUhosPYSc4uXoNz8Vs4wRaBaOBRY9iaLfX1Dy/iYo6e8qNLPg3RhlQLI2uJF81ldKmjjnAOgBoqchn/FKzDJyPweCy383M0k4L9Ac6ryf+polUXWr5nSKpFsSTqJIeoGc3Trk8PyMpHSVwANQ4LoePVc5jFrGcJp36ChNoui3BI3Xj0LrHHyGAuk4ZYDZIIw458DFqEd0DF6PRZwyhpOz/q3k3CqJ3hXYV855FZGouvmdzmRKnU6RiNPWLkZrUozBCyyKSDealba+b98YdAHr8u0bhhYTOw3NCriihjJ2oTEeu91oRNHvU3RROgz1tk1B53qcMsBsEEZU7aahIfux9Aws4pSRu/6tFFwk4byKSFTdqjmdIpGEkygaS1AbmoWel3Io3ip/Xc52WzTUNBMtsz0NrS2xb4wyQH5tVzTu3D/h39HMRNVvEVqrZRFaPKyWMswGpUTR7kK0ENexqId4c+e1QYwyoAH0b6XgIgnnVUSiNlao7HSKRBJOomisRNNtD0HDkOeic/AjNFNrE7RC6X14Af8zKAF7RsQyXC5Ej0Ffgd08+ImqXxd6tlRwdlicMswGpVTTrg3NghmAViFd5XvtFbEMl9z1dxfRahWOR46oH+qyfgw9cK0fit4WOvt+5PvMHSi6G01xqaSb/wF2J6EV8Yah6WBFppJm3SizfaOQzx0AzM+mioZREw+jIbxJeVfEaF5aLbgw0sWcjmG0JuuhdX4mopmDQ9GS9IZRE600W8RIB7/T2RlNpzQMo7XYD6258jKaZm6BhVEXFlwY1TCnYxitzwJaKwfPyBkLLoxqLMCcjmEYhhEDu2gYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEo/wduz+4f/oUEXAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ + 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay + 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) + 2⋅───(φ) + 2⋅───(φ) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: True): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOPUlEQVR4nO2deZAcdRXHPxugABFQghyRACkoAggmAeQoICSACgbU4pAbtoxa3AQBiRxhw1HhiLApiahIGYhgqfEAARGEBAhEiIFNQlAgaApTJGAwWgrhSFj/+HY7vb090/cxve9TNTWzPdO/+e33Tffv9fu93+uOrq4uDMMwDMMwjAaDyu5ATRkKzAFeBBYCx5Tam/ph+uaPaVwepn11MFuUT2k26LAIUi5sC2yFjLkVsAAYDrxTZqdqhOmbP6ZxeZj21cFsUT6l2cAiSNlxLvBn5/UKZEyAN4HVwJZldKpGmL75YxqXh2lfHcwW5VMJG5iDlB0jgJ6A7fsAGwB/L7Q39cP0zR/TuDxM++pgtiifStjAHKTsCDLoYOAuYDzQW3SHaobpmz+mcXmY9tXBbFE+lbCBOUjJGA48BrwLLAb2Bfagr0E3BH4NTAGeLrh/7Y7pmz+mcXmY9tXBbFE+lbWBOUjx2QV4FhlyD2Ai8AtgYxoG7QBmIKPPLLyH7Y3pmz+mcXmY9tXBbFE+lbZBHg7SEyj8dUAObWfFYOBryCNdCqwB/g3MReG7VrpMBx4ELnD2fQB4FFgJvOF85kDgBODLyMg9wJ4J+vlRYDnS8zcJ9i+DNNpCsfqCaWwaB5NW42YUrX0QZg9htohHXW3QlPUzbm8QMBJYRyPrvIocD9yGsuNnA68BW6P6Cj8CjnQ+45/nHAocjkKAXtbSNxw4l2yczy7gk04/9sqgvSJIqi0Ury+Yxi6mcV/SaNyMMrQPoguzh9kiPnW1QVOy/tJdgE1RQae8axR0IkOMSbDvy8AXge2AU4BvA18FdkXZ8ccSXIxqFMHO394EZ9ynYXfgfOAhYBH6MbXD8tKk2kKx+oJp7KWuGneS7DyRRuNmFK19EGXao5Piz9nNGMi26KQax0QVbNCSrB2kvZ3nP/m2P4wM4hfPnVvsBa7PuC+teAz4LfChb/tK4PvO6zEB+/UC66GEMZdDkOffk2kP4VakzzfRwQP6Qfmpi7ZQrL4QXWOols6mcf6k0bgZRWsfRBR7XIT6elGTNoYD76F0iqLI2h7tYguAp1B/mz0ez72noi42GA3cB5yBpuqeBN4GnseXGlSUg3QJEvVaJIjLVKeTt6PkrCrwgfO8NuC9BejEMBXYCRiHlh1CtgY9GRgLfA8Vy1rsbA8KwdZFWyhOX4inMbSPzqZx/oRp3IwitQ8iqj3mOs/7N2nnu8g+52bdwYQksUe72AKU8zM54PGa8/7sXHsajXaxwTXotiVulOpe5PD/CqUH/R5V7gaKc5AWouzz3YDTnG2XIc/558CZGfcjKesDpzuvHwp4/3WUjHYk+h8vAe5E04mvZNSHTYGbgLfQ/DQ0ri6CDp66aAvF6AvxNYb20Nk0zp8oGjejKO2DiGOP51AC7n4B7RwPfBYl1y4KeL9oktqjXWwBciC6fI9NgO1RZPXqfLoZmXaxwWnAFcASVGdpO2AYcIvz3r3INqe6O2SZpN2BwoNrCT5wrkCZ6F0oc/865K2dRv+QXVlcj5YaPoj6FsTdzsPLpAz7MBkYgq7OVjvb3KuLZlMTddEW8tcXkmkM1dfZNM6fqBo3owjtg4hjjw+A+WgqYggayECD8s3odg9F9DkKaezRDrbw04Gc07Oc5/Mov3BlO9hgfVRD6X3gJGAVms6DRsT0fuBLwI7uTv4I0jJaz3X6Hz/x7DsceV8voIJPfpYD3cAOKET7NMo1eD/CPxfUrx87780OeG9GhDb9nI/m3P9C4+q1aD6FfvBLaMzpgk5QbwE7A5sF7Je1tlFtHpUqaOuSVGOots6mcf7niSppHIck9njKefZOs01CV92XouXdrVjGwDhnxyXNsbEe0uks4EbkYIU5R8uwYwLgULRa8HfIRwHNePXSmM5zL8DWuDv5I0ivEuzcNON1z+tm02te/uF5PZ7oK926gY/5to1E3t6d6EfgpSdiuy7nANPQ6rvDgH/G3D8rpiObXIiy+70sRglwIwlOjkyqbRqbR6Eq2rqk0RiqqbNpLLrJ7zxRNY3jkMQeroO0H8rP2NXZfx7SMoxuBsY5Oy5Jj40NgHuA41B0dXLE7+vGjgmAg53nBzzbRqGpvP84f7u5R/+f3vM7SIel6ECYg3QSmktdCWyDCkOdFbHt7oBtncjIM1DSVVImoDnIF9D//2aKttJwKo2Q38MtPrcX/Q+eNNqmsXkYE6iGti5pNIZq6jwB09ilO2BbJ+nPExOolsZxSGqPp9HVtRtBuhVFMM4h2pROd8C2Tup1zo5LUltsBMxCScwXA9+J8Z3dAds6GXjHxE7O80rneRjwcfrmTI1xnue4G7LMQWrlIH0BeatLUKjrCVSRcxoKzZXFpWj+tAclHq4K+Eze87sdKKR6E5r7n9nkO3dEP0T/HLVpG43NSa4xVFPnKBpDcTqbxtUh7XllNVpdtQ9acXUYKhL4fD7djUw72iONLTZBS9LHAmcjG5RNu9mgw/P6I86z66885zzvis45TwIvuR/OykFyE7Tfp5Fs5nIQ8n6XA59D4fMr0f1Wrkflw8vgSpT9v8DpV7PwYEeT7VEZig6IrdDBMRmFrL1cja6Wb0Q/viD2QYmT3lUOA11blygad5NMY6imzlE1hmx0No3z1zhrkp5XXOaiYoY/QIPgFTn0MQ7tbI8kttgcJT7vh6I+dwXvVijtaoOFKDp9AvAzGho/hxzTWWiB2QTvTh1dXV1ZfPlwdIW3ABnZZQQqYrUGnQBf9bw33/nsaOS1xaUTJZuNJX6Y8AwUXlyHEkGDEg6XkSxx0M+2aFBZ6DwvQHq5eRV7IiOtQMub327SzkbAf53Xm6Kq5Xlpm4YitXXJS+M15PsbToppHJ1Okp0nstT4XDQ1tVuM70/bRhp7uJxOI9/o6+h2EmnopBrn7LT2KMoWs1BU9VmUXBzEFFRLKA6dDLxjYks0Hbg18Ad0wTccXYAdgXK8TsF30ZdVBMm9l8o8z7ad0ZK/XuDz9D3pgcqUP4LCjs0KkuXFMOd5PXweo4fHCTd0FAOtcB6gedrVyFhukS83ae8Cmh84oATfV1Ao8NOoZsNA19YlL43fopq/4aw0hug6m8b9iarxCNIXvovbRlJ7PON572/O83zgjhjfnQdVskdRthjtbN+X/vcrAx2HXTH6kZYq2SCojanoPDYu4LOrUI7RzUjXTZztY1Hi9jUo2bwPWUWQ7kHhq3EoJDhQuB3VajnJ+buVgUBXwjNR2Loq87NVxa9tVEzjeCTR2TSOx7PAL4EbSm4jLvehc9n+yEmqC2m1LMMWdSOPY+JxFBG7KmS/YcBfgZ+i/LqmZFFJexRaeriUZIXT2hm/B/sZmq/iG4zmkMdjg0oUklxhmMbxiauzadya4eieVe+ifMx9URG9Huf95agyuJeRaJpk94htHO98fgdPG9NQ9OETGf0fJwNHo6TgdnaOWmk5keAaZFdF3B+KsUW7k4WGrdrYAOU/j0a1unrpnwvtxU2CD11wkNRBGoRCezPRctB16K6+/roOdSKNgTZE99OZgvQy+pLFoGIahxOmc9iAYRq3Zhd0VbsY6ToR5ThsTEPjeehCysstKJL3YsQ2Zjnvu0nTFwMnolwKbw2puGzvfN/tKEdlCfCtFO2VTZiW01FunfuYhpaB3x1xf8jPFnUhCw3D2liHchdBCe3b0pieDCKyg5Q0B2l35AisQuW5r0XJm3XFNdAM4Bs0krv8BnoGGeg1GolzHc5+jyGH0uhLmLYQPqiYxuFE0Xk6ffMHJqJVH3djGkdhOkoxuMD5eynwKLrX1BvOtnloubbLsSiKd1yMNnrRPeoeQDlbl6Elyv78rbgcgZzff6EcxwlEL9JZRaJo6RYJvAz4CspTWRpj/7xsURey0DBKG0OQLecTHtl2HaSesM4ndZBeIPsb3VaZNAY6EA0yi2gsVT6N1iHAgUQWg4ppHE7UwaLZgHEQpnErhgKH0z+Zdi19T8R/RIX+tkAJuzeiZdNvxWgDVGhwPro4PYrWdzCIyg+dRx2Io+Xl6PwyBng5wf552KIOZKFh1DZGoSBNlGn/oyJ8Bsi2UGRdSWuguQwsZzIOWQwqYBqHEedEBcEDhmncmlEokuyPpO9N36rJC9B0/D6oFssHyHmN0wboCnsEsknVqxiXQVQtr0QR1UNoRI7i7A9mi2ZkoWHUNkaSQxFTO+GF08pAPZ6/R1J+ldl2I6q23kHlQvoOKkY4UXUGDRhnogHjZYyo9KLlzxt6th2CnKAez7b30HniaBSluxj9nuO0MQLVazkbrTS7Lpt/oVZE0XISqu80hr7OUdT9wWzRiiw0jNrGnii6nSnmIIVTqoFqThaDihFOVJ1bDRhGaxag3+lUdN+ncTQqH/f4PjsP1Z6ah3I447SxA5oqvQkVcZyE6kcdjOElTMvL0Z3oT0RR6W2cx0YR9wezRRhZaBj1uBqEakcNof/NeRNjDlI4pRqo5mQxqBjhRNE5bMAwWvM6Kn1wJMqfuASd8N/Bc3dwhx7gQ/qvzAxrYwt0c837aVxlL0KrgKZk+c/UgFZaLkWr8wYDT9EogroCOCDC/maLaGShYdTj6nLgGLTiObMoXlaFIuvOKchgm6JpiieAi5y/P/R85gbkIN2GBnMjnCjagsrc34HCsUsK7mMdaKVzL1q5tFnAfocCs4vp4oDhETR9aecIw6gw5iAZ7YINKkY7MwgVvRsPnIdKpawutUeGYbTEVrEZVcY7qOyBlp0bRjsyGtWQegmVqTDnyDAqjjlIRpWxQcWoC3OwnE/DaCvMQTKqzBxsUDEMwzBKwAYfwzAMwzAMH+YgGYZhGIZh+DAHyTAMwzAMw4c5SIZhGIZhGD7MQTIMwzAMw/DxPyU1d62GiXTxAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: True): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOXUlEQVR4nO2de7BVVR3HPxd11Ai1MF+Jythw1VRACR8pgo+S0HJ85BO9I1k+UDExCRUvPgYfpJdJ0rIHSdqklGlipimICKN09SJqqViMMYBKUVO+wdsf3707+xz2OWe/9z7n/D4zZ/a9++y1zzrf39lr/fZav/XbbZ2dnRiGYRiGYRgl+uRdgSZlADAfeBlYChyfa22aD9M3fUzj/DDti4PZIn9ys0GbjSClwo7AdsiY2wHdQDvwbp6VaiJM3/QxjfPDtC8OZov8yc0GNoKUHOOBPzt/r0bGBHgLWAdsm0elmgjTN31M4/ww7YuD2SJ/CmEDc5CSYzDQ47N/GLAZ8PdMa9N8mL7pYxrnh2lfHMwW+VMIG5iDlBx+Bu0P3AWMA3qzrlCTYfqmj2mcH6Z9cTBb5E8hbGAOUjTagSeA94FlwHBgb8oNujlwPzANWJRx/Rod0zd9TOP8MO2Lg9kifwprA3OQwjMIeBYZcm9gEnAfsCUlg7YBs5DRZ2dew8bG9E0f0zg/TPviYLbIn0LbIA0HaQEa/joohXMnRX/gG8gjXQ68B/wbWIiG72rpMhN4GLjYKTsXeBxYA7zpHPNF4GTgOGTkHmCfCPX8JLAS6fnbCOXzII62kK2+YBqbxv7E1bgaWWvvh9lDmC3C0aw2qMqmCZ+vDzAE2EAp6ryInATcjqLj5wFvANuj/Ao/BkY7x1TOcw4AjkRDgF7WUz4cuJBknM9O4LNOPfZL4HxZEFVbyF5fMI1dTONy4mhcjTy096MTs4fZIjzNaoOqJP2hg4B+KKFT2jkKOpAhRkYo+yrwVWBn4HTgu8DZwB4oOv4E/JNRDcXf+dsf/4j7OOwFXAQ8AryAfkyNsLw0qraQrb5gGntpVo07iNZOxNG4Gllr70ee9ugg+za7Gq1siw6KcU0UwQY1SdpB2t/Z/smz71JkjEurlGkHPkBTc1nxBPA74OOK/WuAO5y/R/qU6wU2QQFjLochz78n0RrCbWju9dvo4gH9oLw0k7aQrb4QTGMons6mcfrE0bgaWWvvR1B7PIrqW9nhufEgvcAN6VTRl6Tt0Ui2eBrVt9rrydRrKprFBiOAB4Gz0FTdU8A7wPNUhAZl4SAtdLYHVinzfSTS+ITrEpWPnO16n/e6USM9HdgdGIOWHUKyBj0NGAX8ACXLWubsrxyCbSZtITt9IbjG0Fg6m8bpU0/jamSpvR9h7HEZ6givQ7q7TEcdy50ooLYIRLFHI9nifmCqz+sN5/15qdY0GI1ig2vRY0vcUaoH0M3Xb1B40B9Q5m4gGwfpORTMdYDP8ScBR6FArRd83s+aTYEznb8f8Xl/FQpGG42+42XAz9F04msJ1aEfcDPwDzQ/DSVtKi+eZtIWstEXwmkMjaOzaZw+QTSuRlba+xHWHkvRiqE9gbHOvslotONe4Ny0KhqSqPZoJFtMd47zvvoCu6DRvGvSqWZgGsUGY4ErgZdQnqWdgYHArc57DyDbnOEWSNJBakPDg+spb8Q+Apag+dWdPPv7Areg1OFTEqxHHG5ASw0fRp6kH3ejH+an0HDiFPRdKocdozIV6XQ1SqkOpbuLyuHXZtMW0tcXwmkMjaOzaZw+QTWuRhba+xHWHqDO5H3UIY8HrkffeSzp1zcocezRSLZwaUOjThPRDcPZ5G+LRrDBpiiH0ofAqcBaNJ0HpdHrh5ztbm6hSgdpBbXnOitfv/CUbUfe14voovLytLP1Dp9PQR7c5WipYC386vUz5715Pu/NqnM+Py5C8Q9/oXTHlDWfBy5EHu4dnv2r0N3G54CtKsqkoW1QmwelCNq6RNEYiq+zaZx+O1EkjcMQ1R4rgS5gVzTFuQjFJH0Y4DNX0Bptdlii2gI01TkLOA+4CTmt9VaMrcCuCYDD0WrB3yMfBTTj1UtpOs91yt5zC1Uu83+djZ2bWqzy/O03vebiNnwHoLm+PYBLgMVoSK0eXcA2FfuGAF9zyq+oeK8nwDm9XADMQKvvjgD+GbJ8UsxENrkERfd7WYY87CGUB6rG1TaOzYNQFG1domgMxdbZNBZdpNdOFE3jMES1B8Dbnr/HEXx1chet0WaHJaotNgPuAU5EI3pTA35eF3ZNABzqbOd69g1FU3n/cf53Y4/+P71X6SAdEaMCtRykRchTc+8Mb0Pe8AUEy5nQ5bOvAxl5Fgq6isoENAf5Ivr+b8U4VxzOoDTk92iN4/aj/OKJq20cm9djAsXQ1iWqxlBcnSdgGrt0+ezrIH47MYFiaRyGOPY4FcW/rAF2QMn8zgv4uV0++zporjY7LFFtsQUwBwUxTwS+F+Izu3z2ddB618TuznaNsx2IpvW8MVMjne18d0eSiSJrOUjrUKT+MBS9fwRKOPV8gp8fhcvR/GkPCgJd63NMkIY5Dm1oSPVmFIcxu8pn7oZ0q5yjNm2DsTXRNYZi6hxEY8hOZ9O4OMRtV76CRhheQtMTC1AW5RloOiUvGtEecWzRFy1JHwWcj66HvGk0G7R5/v6Es3X9leec7R7od/4U8Ip7cFIOkhug/SGlYLNKFqLEWD9Egl6Z0GdH5SoU/d8NfInqw4NtVfYHZQC6ILZDF8dUNH3g5Rp0h3YT+vH5MQwFsVZbIt2K2roE0biLeBpDsXQOqjEko7NpnL7GSRO1XTkEjVisRN/7baTFfahjPC6d6talke0RxRZbo8DnA9Coz13+xTKlUW2wFI2Ingz8ipLGzyHHdA5aYDbBW6its7MziQ9vR3cV3cjIfpxJKY7gHJSaPA4dKNhsFOGHCc9Cw4sbUPChX/DnCqIFDlayI+pUljrbbqSXO5e/DzLSarSk9p0q59kC+K/zdz88gWQkr20cstTWJQuNoTg6m8bB6SBaO5GkxuPRNOGeIT4/7jmi2mMQSjz4HnKUXvccuwS17yPQnXZYOihGmx3XHlnZYg4ayXsWBRf7MQ3lEgpDB613TWyLpgO3B/6IbvjakdN/NIrxOp2Km76kRpDcZ6ksrnHM35ztEuAnCX1uVAY6202o8Bg9PEl9Qwcx0GrnBZqnXYeM5Sb5coP2Lqb6hQMK8H0NDQXuCzzjea9VtXXJQmMojs5JaQzBdTaNNyaoxoOJn/gu7Dmi2uMBNDXyZcqdI9CjJR5DU0XVEnqmRZHskZUtRjj7h7Px88pA12FniHrEpUg28DvHdNSOjfE5di2KMboF6drX2T8KBW5fi4LNy0hqBOkeNHw1Bg0J+vGg8/6BqPFrBu5ET2M+1fm/loFAd1+z0RRCkvOzraBtUNLSGExnF9M4HM8CvwZuzPkchoirpdkiPmlcE0+iEbGr65QbCPwV+CWKdaxKEokih6Klh8upniTqNOBYFGDWLI0ebOzBfgH/IHWA/mgOeRzJdiqtom0Q0tIYTGcX07g27eiZVe+jeMzhKIlej/P+SpSN2ssQNE2yV8BznOQcv6vnHDPQ6MNnEvoezUItLSfhn4Ps6oDlIZg9W520r4nNUPzzCJQ3rZfqsdBQCoKvu/gjqoPUBw3tzUZLczegjJ7evA67oB/gnWi+8yXgOxE/rwjEMdDm6Hk605BecWklbSFYh5C0xtB6OtfrMEzj2gxCd7XLkK6TUIzDlpQ0XoxupLzcir7/ywHPMcd53w1gnwicgmIpvHmLWp16Ws5EsXXuawZaBn53wPJQ356tThbXxAYULwcKaN+R0vSkH4EdpKgxSHshR2AtSs99HQre9HI0akj/hea1JxA8yVjRcA00C/gmpeCuSgM9gwz0BqXAuTan3BPIoUyCVtIW1CFcjjqEcyh1CAejDiENjaH1dJ5JefzAJLTq425M4yDMRCEGFzv/LwceR8+aetPZtxgt13Y5AY3inRjiHL3ouWhzUZzQZLREuTJmqNUJoqWbJHAy8HUUp7I8RPl69mx1sromdkK2XEL9kW3XQeqpV/mkYpCanceQM+iN0/gpMpCbffM4NPWwNeUGOgTlEPE+n24stYcAW4kg2oKWlM5Fy0zdDsGdzjSN6xNUZ5fJKIB7FMoLYhrXZgC6MRpO+fTgj5z3Rjv/H4wyhvdHAbsvoxVBXSHO4bLIOfYYwj84t9kJo+UVqIMeBbwasnwte7Y6WV4TU1GfcCgJkmSiyGZlAHAkG68iWE+5BzoUjaJVeq8LSfahwM1EUG1BmWeXoNHKYyiP9TKNaxNGZyh1GCMpdRimcW2GopHkypH0/SnPmtyNpuOHoVwsH6E75DDnAHUGg5FNip7FOA+CankVGlE9jNLIUZjytezZ6mR5TQwhhYSy1uDVp5aBejz/DyH/7NWNRlBtwTqEOITR+SrgXNRhvIoRlF60/Hlzz77DUIPf49n3AWonjkWjdBNRhxDmHINRvpbz0aq/65P5Ck1FEC2noCn7kZQ7R0HLQ217tjpZXhP7UD66nQjmINUnVwM1OdYhZENQnWt1GEZtulFDPx0992kMpczHPRXHLka5pxajGM4w59gVxWPcjBJqTkE5ixKdWmgC6ml5BXoS/SloWmcH57VFwPJeqtmz1cnqmgD5MvuiWKRtkqm+OUhByNVATY51CNkQROd6HYZRm1Uo9cFoNP17Gfq9vovn6eAOPcDHbLy0ud45Po1ijR6idJPwAlrEMC3JL9ME1NJyOVop2R/Fvqz2vA4KUD6oPVudLK4JlyuA41HKgMRuoC1IOxinowaoH5qmWABc6vz/seeYG5GDdDvyho361NJ2G9SALQC+5SlzL9L5EIyg1NK5F60i28qn3OHAvGyq2DI8hqYvrY1oDsye8SmkhuYgGYZhpE8flLNrHHAhSpWyLtcaGXEwe8an8BraKjbDMIz0GYFySL2C8rwUqiMwQmP2jE/hNTQHyTAMI33mYzGfzcR8zJ5xmU/BNSx05QzDMAzDMPLAHCTDMAzDMIwKzEEyDMMwDMOowBwkwzAMwzCMCv4Htqx+6IcE8cgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay - 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay + 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅───(Ay) + 2⋅─────(Ax) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: True): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAOUUlEQVR4nO2de7BVVR3HPxd11JSyNBUKk6kRJQ1Q8pGGEJYaWo6PzAdyi6xMVMxnPq+PBh+kl5KszAkzbVLTsiCTVESUlMALSOWrGGNEE6KmfALe/vju7dl3373Pfpz9Ouf8PjN3zr37nHXOut/vOmv/9lq/tXZHV1cXhmEYhmEY7cqAsivQggwB5gF/BpYCR5Zam9bCtM0X07dYTO/qYF5Ug9J86LCRocwZBGyPjNweWAwMA14rs1ItgmmbL6ZvsZje1cG8qAal+WAjQ9kwBfiL8/tqZCTAP4F1wHZlVKpFMG3zxfQtHldz07tcrO1Xg0r4YMFQNowAegKOjwY2A/5RaG1aC9M2X0zf4gnS3PQuHmv71aASPlgwlA1BZm4L/BSYDPQWXaEWwrTNF9O3ePyam97lYG2/GlTCBwuGkjMMeBB4A1gO7A3sTl8zNwfuAaYBjxVcv2bGtM0X07d4ojQ3vYvB2n41qKwPFgwlYxfgCWTi7sD5wJ3AltTM7ABmIcNvLbyGzYtpmy+mb/FEaW56F4O1/WpQaR/yCIbmo2Gt/XJ470bZFvgKijqfA14H/gMsQMNxUXrMBOYAZzjlZwMPAC8BLzuv2R84FjgCGdwD7JGwnlsDq5COv0pYtgwa1RWK09almTQ2ffMnC439RGmepd5BNJsHLll7UXTbD6IZvWhFH0LZNOP3GwCMBDZSywivEscAN6KM9YeAF4Ad0F4GPwYOdV4TNEc5BDgIDet52UDfIb4FNB5kdgEfcOqxZ4PvVQSN6ArFauvSRfNobPrmT6Ma+4mjeZZ6B9FFc3ngkqUXZbT9ILpoPi9a0YdQsv7QXYCBaMOkPPcF6EQGjE1Y7hngc8AHgROAbwFfBnZFGetHEb7J0yiCg7y9CM6ET8tw4HTgPmAZakRVX+LZiK5QnLYuzaax6RuPTtL1C9C4xn6K1txP2W28k2p4UbYP0LxetJoPdck6GNrLefyT7/ijyIywn4czrkcYDwK/Ad72HX8J+IHz+9iQsr3AJii5y+VAFOX3ZFZDuAHNm34TfXFADSmIVtAVitPWJa7Gpm862rEN+ylacz9JPLgf1dd/YnPzN3qBq7KvYihZelG2DxDfi7NQfc8KeZ9hwJsoFaUIWsGHMcC9wCQ03fYI8CrwJL5UnqynycKCoXuAuQGv/xKwExqCK5v1zuOGkOcXo4Y4HbgGRcffd57ryagOxwPjgO+iTaiWO8f3JFi/VtAVitHWJYnGpm9y2rUN+ylScz9JPTgHWAJcCfwaXcGD6j4JuAklu1aBpF6U6QMk82KB87hvyHt9DwUUUzKuYxqawYcrgAvRNN/FqG1vDdwNnAj8HgWYq6G4YGh6wGuvRZ3dLODyjOuRlE2Bk5zf7wt5zYsoaWwa8AU03HcLiuKfzaAOA5Ema9H8MtSuIsLmmFtBV8hfW5ekGpu+yWjnNuynKM39pPFgKVq5MwmYiHS/AI1k3AF8PZ+qJiaNF2X5AMm9WIKSlPcJeO4Y4NMoqFoW8HyRNIMPE4GLgKdQMLoPMBS162nIm8+joOhayDYY6kBDfxuob1YHyio/xXk8jfI3t7oKLfWbg6LFMG5zfrxcklEdLgMGo6h/nXPMvYoIG9720sy6Qr7aujSisekbTbu3YT9FaO4nrQcXoVU8Xejq+dvo/51I/2mSskjrRRk+QHIv1gOL0NTOYBRAAGwFXIduT1FEvaOoug+booDnLeA4YA2akoPa6NtvUTC0s1vInzO0kvrz9/6fn3nKDkPR1lNoQ6UgNkFXHaegobIpRHd2QXX6ifPcQwHPzYp4Pz+no+j0r+iLXwYfRR3/CmpzsaAvw1rgI8C765RPqutK0vsclyro6qURjbNqt1lq3Er6QjZtOMt+AaqncRSNeLAK6AY+hKZjHkM5RG/F+NyVmBd+0nrxqPPonSq7BCUxn4eWttdjJa1/voziU2jl3u9QPAKateqlNiXnBvivu4X8I0PPEx7IBPGi5/ewKTKXzYDbgaPR1cdlMT+jG9jGd2wkiupuQeZ76Yn5vgCnAjPQ6rfxwL8SlM2SmciLM6nN17ssR0lqIwlOnEujayM+x6EqunpJq3Hadpunxq2kL6TTuJv8+gWopsZRNOIBwCue3ycTf0VwN+aFn7ReuMHQPii3ZVfnPRYiLaPopvXPl1F80nmc7Tk2Ck3H/df5e5Dz+M4UnT8YGt9ABeoFQ1sAdwETgLOB7yR43+6AY53I3FnAvATv5WUqcD2KHMejIcgyOJHaEN79dV63J/2/OGl1bcTnKKZSDV29pNW4kXabl8ZTaR19Ib3G3QHHOmm8X4BqahxFIx6AphOmo5VCO6KN8U6J+dndAcc6MS8guRePoREMd2ToBjRqeirxpoy7A4510jrnyzh82Hl8yXkcCryXvvlNY53Hee6BLHOGwoKhrdDStnHAN9AmTmVzHpr37EFJaWtCXpd3vsJ7UPLWepTAGPR5O6PG559jNl2j6UBD0Wk0Nn3jYW24fBrxAOCzaNRgBZpimI92Hp6BpkPKIo4XVfIBGvdiHVp1NhqtRBuPvhdP5lDXuDTTd6LD8/u7nEc3NlniPO6K2vkjwNPui7MKhtzk6beoJYiBGsYcNOTXie5CWzYXoxUqi4HPUH+or6POc1EMQV+G7dEX4zI07OmlG12FXYMaXBCjUVKdd/VBO+vqJY7Gl5NcY9NXWBsOJyuNs6CbdB4AHIBG5lah//kVpMOd6AR4ROa1jUdcL6rkAzTmhcsCtFHjD1HgcVG2VUxEM34nlqKRzmOBX1DTeQkKRO9CC72megt1dHV1ZfHhw9AVxGJktMtsdNXxBEpmCmIa2n8gCZ0oKWwcyYb9JqGhwo0oSTAoGW0l6RL8/AxCJ5GlzuNipJM7D78HMmc1sBvaCCqILYD/Ob8PRAlfeemaliJ19ZKXxndh+kLzteFO0vULkK3GU9C0xm4J65CmfCMejECbWr6OgqLnPa9fhPryMegKOimdlO9FkT5AY154OYlaftDJ6NYXjdBJ+efLIr3YDk3n7QD8AV3UDUMB/iEoR/EEfBd2WY0MufcbWeg5NgB9kdzn/fckAc07dmVUhzgMdR43wRcVeniYbMxd7fyA/s91yKQXnGNugt0ZhH9pQEm4z6KhvY9RW3oJ7amrl7w0Nn2FteG+xNV4BI1tJJekfFoP1qJl0b3AwfQNhEC3XpiLpnzCNgHMi6y8KNIHSO/F477n/+48LgJuTvD5WVPl78R01IdNCHjtGpQTdB3qZ7Zyjo9DF2FXoCTwPmQ1MnQ7GpaagIa+24Gb0H4cxzl/1zNnNJpuGE415lWrjF/XuJjG8TB98+cJ4JfA1SWVN0Sz+nAvOo/siwKiViBrLx5Go1yXRpQbCvwN+DnKwQoli3uTjUJLYp8j+aZkzYw/Uv04wSvptkX5EJOxk0gc0lxBmMbxMX2zZRi6h9MbKF9yb7QhXQ+6hUXQnlKXxiwP2nn4TbT/j8sMNLLw/uz/naYlSscoL6LKr0I7cnsZibwZnuH/cTxwOEqabtZAKE8vNkO5yWPQ/ku99M1T9uMmqUcmoKcNhgagIexb0VLAjehutv79FFqFtOZsju69NA3pZPQlixOBaRxOFh286RvOLuiKdTnS9XyUl7Al0ngmyrtyf2ag5b63xSwPyl9bTi2J9mzgiyj3wbsvUDsTR8d6XsQpvxBd8Hq5Ho209ptySchOzmfehHJ7VgDnNvieZZG3FxtRfhto8cUgalPuQcQOhtLmDA1HJ/41aFvrK1GSZSvimjML+Cq1RCy/OY8jc15AJ5MOp8yDKGg0+hKlK+hEcB46EZxM7UTwCXQiMI3DiaNvVAdv+tZnJkoLOMP5+zngAeBQ4GXnmLvJ2wXonkxjndfFLd/rlJ2N8nouQMuC/Tk+7UxcH8K8mBuj/EK0/YPLUWiU9egM6n8Iutj4N7qZ6FTib3hZNYrwYrBTfhHRI9VuMNQTVfG0wdBTZDPF1gzEMTfInAPQ0r5l1JanTqT+kF47kcWJYH9M4zDi6BvVwZu+4QwBDqJ/8vcG+ne8FyKdxwLPpCh/P+pbrgQOI3yX/3YkiY7Q34u45f+INgR9H0qOvgYtOV/bQN1dfuT8NDtFeTEKDb7EmbI/LMZrgOzvWt9qNGLOAtonYExKVicC0ziYrDp40zecUWhU2D8ivhd9dx2+GI3MHUhtRChJedAFwAjkRZV3/i2DJDoGeRG3/GKUDjEa7VuzHl1wGDWK8mIkOWxCaR1dfeqZ0+P5eyTl7hDabMTVFexEkIa4+no7+DOxDj4JvWjJ8eaeYweiE2WP8/claHp3LH0DobjlQW3/bnQFfS+6m7xRI66OYV7ELf8m6uMPRyPUZ6Pvi1GjKC/2QKPVmWLBUH1KNaeFsRNBvlgHnz+LkX7T0b2QJlDbRbsHTQGcjnLcXkW7Eu+INtyLUx60cGAO2uvnFnQSOZjajSiNeDrW8yJOeZeFaI+uhShX1uhLUV4MQPszDab/TWlTY8FQfUo1p4WxE0G+WAefPy+irQYORVO356B2+hq62j0XbUnwKLXNK1cD+8Uo/yyaurwPeeJeBCxDiwqm5fqfNRdROnZQ34uo8l56gLfpvwLTEEV5cSFwJFoNm9kFclabLrYyJ6DOZyCadpgPnOX8/bbnNVejYOhGdHIx6lNP123Ql2U+8DVPmTuQxgdgRBGn3YK23L8ZjcKtKLiOhtFMzEWJvta/tyAWDBlGe2MdvGGEMwDtaTYZOA1tK7Ou1BoZuWCryQyj/fB28LujfT4Mw+jPGLTP1tNo6wkLhFoUC4YMo/2wDt4w4jEPy61tCywYMoz2Yx7WwRuGYbyDdYiGYRiGYbQ1FgwZhmEYhtHWWDBkGIZhGEZbY8GQYRiGYRhtjQVDhmEYhmG0Nf8HOllbarzaO/8AAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jz + 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay + 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz + 2⋅───(Az) - 2⋅───(Az) - 2⋅───(Az) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: True): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAN50lEQVR4nO2debAU1RWHvycQNQQlYowbKjEliAsgxBUFlyQaY9QoUVT0lWRRcSNixA0fLoUR1GdFEiNJRC1NRUks1xitCC5IEgQf7hqNRCkwijHGckPIyx+/7up+PT0z3TO9zEyfr2qq3+vpuXPnd26fPn3vubfbOjo6MAzDMAzDSIr18q5AAzAQWAC8ACwDvptrbZoH0y0eplcymI75YvrnS9Po32Y9F2wBbIYMtRmwBBgMfJRnpZoA0y0eplcymI75YvrnS9PoX9Sei9OBF52/VyFDAbwNvAdsmkelmgDTLR6mVzKYjvnj2sD0z56mbP9FDS6GAV0h+0cBfYA3M61N82C6xcP0SgbTMX/CbGD6Z0NTtn8LLjwGALcAE4HurCvUJJhu8TC9ksF0zJ+gDUz/7GjK9l+E4GIw8AjwCfAssDuwMz2NtT5wFzADeDLj+jUqpls8TK9kMB3zp5oNTP/0aJn23+rBxQ7A35CRdgamAncCG+IZqw2Yiwx6a+Y1bExMt3iYXslgOuZPNRuY/unRUu2/0WeLDACOBA4FdgG2AtYg8W9yXv+r8PmHgdXAeN++3wCHoKxbgNHAY8AzvmMmON/RjNSrGZhucXUzvWprZ0Hy1PELwEvod9wNHFFneVmQhw3SbMdFt0FLtf/e9RaQMuOAX6AM2fnAG8CX0dzeXyHRxxE+5jQQOAh1K/lZS88upidorR6cejQD0y2ubqZXbe0sSN46diDH2g3slkL5aZCHDdJsxx0U1wYt1/6zcHbtqMJja/jsK8B3gK2B44HzgZOBIShD9ijKLyIyAliHN23HZSThmbeNRDv5aAamW1zdTK/a2lmQPHUcCpwJPIjuCAeS3fS+dswGYDZoOe0rBRej0Upg/0XR0z+Bi6p8JmkeAe6ltFvpLeAG5++xZT7bDfRCyS8uY1BU1pVYDcV+wD3ASahr7HHgQ+BpYK+Ev6sa9WgGpltc3UyvnkRtZ0Gy1DHI9Wgs+8d43c0jQo57CNUzeLFwx8G7gSvTqWIoRbPBOaiO55QpYzDwKRo2yIqkbNDo2rssRHUt93rUPbBcoHA5MlB/JNAcYCPgMuDC2n9DonzmbNeWeX8JamizgO3RmNgtzntdCdbjMhSEuRHm3aiR/wEYDvwJb7wsb6ppBqZbGJV0M71KidLOgmSlY5DjgP2Bn6OFityx67Cu4XPRReRydCFwmYUCvjkoCa8RaEUbPOFs9yxTzs+QXU5PuoI1EscGja69y13A9JDXG877890Dw4KLySiAmImil58ApzoVAEU3eY8d9wZOdP5+sMwxK9Ec4EOAp5BjuBktk/r3hOoxAfXmPI/mIm8NDAKudd67G+gHnJDQ99VDFM3AdAtSTTfTqydR21mQLHQM0g/5uXfRmDN4d25hznUZytDfEekOcAHyiXcAp6RUz7i0qg2WAh8De4SUMw74OjCbnsmOeRHXBo2uvcss51j/qy+wDeq9u9Q9MBgkbInukBahsSN/EkoXyibtj8Zk8uRKNFXnAXTHVo7b0I/+IuqamoaEiJtBHUZvNM94DcruXY26scCLsO9zttsl8H31ElUzMN38RNHN9PKI086CpKljGNORz7sELaMM3p1buW7hi9AaBB3oDvkK9DsnpFjPuLSqDT4DFqPrz5a+/X2Ba9By2NNSqmdcarFBI2sfRhvq8ZiCgrqT8dU1GFyMxzNU2A/60NmuK/Nlyykdg7nJeW9+yHtzI/yAIGeiMbeX8O4e8uAAlF37R+A5Z99I9Lu6nP9dDT+uUM5yiqMZmG5xMb3SYSfgDNQbdINv/0p0J/dVNBQcZAXQCWyLuuGfRDkYayJ853LMBn5qscFCZ+sfGpmGevPOA96v8p3LMRtA7e3fpRfS5lTgKhRo95gRE5yKejhyVA+UKXArFGCsLPN+J+rZ8DPcKfdmZFg/XWXKKcck4Dr0uNkDgX/H/HyS7Ots7/ftG4G6sD5w/nfHwCt1a3VSHM3AdIuL6ZUOs5H/m0zpzdKz6M5xOOHJge/4/p5I9CdSdmI28FOLDdzgYg+UbzTE+fwipGE1OjEbQH3tvw9wO3A06sGbHvYFvQN/7466XcNOlq8Bm6Mu2HLdNJ0h+9qR4eaihLRaORuNMT+HjPZ2HWUlwfbO9i1nOwh1Z/nH18Y62wUVyukM2ddOa2oGpltcTK/kOQFvaOmhCsftRqlzHY/Gnd9C/vAsdPcWhc6Qfe2YDeLY4El0h+z2XFyP7qInEW09j86Qfe0Uywb1tP8NgHko4XQKcHW5D/uDi53QNJjPoeGSYADhTv+5sVKtU+I8NIbVhZJ2VoccE6VhJUWb7+/PO9uRznapsx2CurQfB17OqF5+omgG2enWFvi/mXXLQ7Nm1gsa4+FKbairdyYav7+V8Hpthy4OwXHnb6G72+eR5o8B30d3qi+lUuNoFMkG76FZDaPQTIcD0SJWT6dT3cg0kt+oxMbUrn1fNBV+f+A0pHtZ/MGF67T6AwfTc2hkEnAMulu6t3r9E+VilIG6BPgG5buZghevWhmIRN8MGWA66n4LsgzdxRwD/A4vu3YpMs48NAXp7ITqFYeomoHp5ifLtlYkvSC5dlYvl6Ieh6vQBSGMUShx0J8xPxppvQL91nfQ778TXVSOSKe6VSmSDVyeQAs//RJdxC9KoY5xyPoaVQ+d1Kb9xigm2AP19NxS+rGehAUX96KT6HZ0Au0L7IOmxxwXrf6JcRIy2jp0Z3ZmyDHLqS3pphxrUVfnMuT4l6CgKjhU9Gs0XnUkWhPenUFzCgrO+qCLwlKyJQ/NwHSLi+nlcTq6gdmxjvpEKWMX55g38U2ZC+E59Lt2RA+N2gENB7+P7kpXOcfNQ37xcOQnH6+9+jVRJBv4k5UXAj9Ez8OYTL55DUnZIAv969H+dmBv9GC1r+BNXfUzA63VAZQGF2uAY1EkdiJaAvR1FBlejaZgZckgZ9uL8ndmj5Ks4VbhOY+3UTfcpniLhLisRmPd16CVE/s6+/dHyXeXoaSerElKMzDdgiTZ1kwvj2HUv1BQsIxZyAaH+va5SWxn4c18C+MTlBw7BNgVrSPSDXwTeC1w7Pko6JtJ+cWd0qJINvir773Xne1iFHznSVI2yEL/WrVfjHwPKC8z+PwTkA/r8O9wn4raC2Wev4jXg9FKzEFR7vhqBwYYhbquh1J5vGwQ8A/gt2Tfu5Mmplt8atGsyHqB7oZ+D/w0wTIeRcl5l9RVs+LQTDa4B10w90QXvlagmfSPhLvOxVDU/ZF112pW1BIVDkDjShOpnojjJr7knVSUNKZbfOJqVjS9BqPnMXyCprztjhYb6nLeH4e6Vrf1feY6dCf1pQhl9EE9sPuh9Q+6ad7H2qdFJf1WoBVH/QxHNhkasYw0bXAccBhKJmzWwKLaOTCV8Od2XBKxjIY4B9zgwu2taGan5ZKE81ofraE+A019qkYRnH4Up1M03ep1EkXTawd0d/Us0mkqSojcEE+zec77bpLeFDRUezDKAatWxjqUfAlKPtsCr0vXqK7fIrTsgJ9rUY/cCxHLSNoG2zjfMQctePU8eixFMxLlHJiNNHNf16Gpz7dFLKMhzgE35yI4va1ZcUWfixJ+BhPuvM5DzusHeM5rb+S82pzPP4K6qqPgOv2uSgc1MFF0q+Z0iqZbFM1m03OsdSqa9XEbxdMLpMcDaMwX4FXgz+h5Cv9y9nWj53Xcj/IbLkDTPl+LUcaWaJh3MY0x/a+RqKbfIjTN0OUo1Bt3dIwyIFkbHIwC8P+g/Jezib5wWaMRRbsP8BbIuwD4Hsq7ejVGGbmfA25wcYbzanaScF77oAvAM3jTyyZQuVvp24nUPj+i6FbN6RRNt3qdxGiKpddA4CBKk8HWUhosPYSc4uXoNz8Vs4wRaBaOBRY9iaLfX1Dy/iYo6e8qNLPg3RhlQLI2uJF81ldKmjjnAOgBoqchn/FKzDJyPweCy383M0k4L9Ac6ryf+polUXWr5nSKpFsSTqJIeoGc3Trk8PyMpHSVwANQ4LoePVc5jFrGcJp36ChNoui3BI3Xj0LrHHyGAuk4ZYDZIIw458DFqEd0DF6PRZwyhpOz/q3k3CqJ3hXYV855FZGouvmdzmRKnU6RiNPWLkZrUozBCyyKSDealba+b98YdAHr8u0bhhYTOw3NCriihjJ2oTEeu91oRNHvU3RROgz1tk1B53qcMsBsEEZU7aahIfux9Aws4pSRu/6tFFwk4byKSFTdqjmdIpGEkygaS1AbmoWel3Io3ip/Xc52WzTUNBMtsz0NrS2xb4wyQH5tVzTu3D/h39HMRNVvEVqrZRFaPKyWMswGpUTR7kK0ENexqId4c+e1QYwyoAH0b6XgIgnnVUSiNlao7HSKRBJOomisRNNtD0HDkOeic/AjNFNrE7RC6X14Af8zKAF7RsQyXC5Ej0Ffgd08+ImqXxd6tlRwdlicMswGpVTTrg3NghmAViFd5XvtFbEMl9z1dxfRahWOR46oH+qyfgw9cK0fit4WOvt+5PvMHSi6G01xqaSb/wF2J6EV8Yah6WBFppJm3SizfaOQzx0AzM+mioZREw+jIbxJeVfEaF5aLbgw0sWcjmG0JuuhdX4mopmDQ9GS9IZRE600W8RIB7/T2RlNpzQMo7XYD6258jKaZm6BhVEXFlwY1TCnYxitzwJaKwfPyBkLLoxqLMCcjmEYhhEDu2gYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEoFlwYhmEYhpEo/wduz+4f/oUEXAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ + 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay + 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) + 2⋅───(φ) + 2⋅───(φ) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: False): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOPUlEQVR4nO2deZAcdRXHPxugABFQghyRACkoAggmAeQoICSACgbU4pAbtoxa3AQBiRxhw1HhiLApiahIGYhgqfEAARGEBAhEiIFNQlAgaApTJGAwWgrhSFj/+HY7vb090/cxve9TNTWzPdO/+e33Tffv9fu93+uOrq4uDMMwDMMwjAaDyu5ATRkKzAFeBBYCx5Tam/ph+uaPaVwepn11MFuUT2k26LAIUi5sC2yFjLkVsAAYDrxTZqdqhOmbP6ZxeZj21cFsUT6l2cAiSNlxLvBn5/UKZEyAN4HVwJZldKpGmL75YxqXh2lfHcwW5VMJG5iDlB0jgJ6A7fsAGwB/L7Q39cP0zR/TuDxM++pgtiifStjAHKTsCDLoYOAuYDzQW3SHaobpmz+mcXmY9tXBbFE+lbCBOUjJGA48BrwLLAb2Bfagr0E3BH4NTAGeLrh/7Y7pmz+mcXmY9tXBbFE+lbWBOUjx2QV4FhlyD2Ai8AtgYxoG7QBmIKPPLLyH7Y3pmz+mcXmY9tXBbFE+lbZBHg7SEyj8dUAObWfFYOBryCNdCqwB/g3MReG7VrpMBx4ELnD2fQB4FFgJvOF85kDgBODLyMg9wJ4J+vlRYDnS8zcJ9i+DNNpCsfqCaWwaB5NW42YUrX0QZg9htohHXW3QlPUzbm8QMBJYRyPrvIocD9yGsuNnA68BW6P6Cj8CjnQ+45/nHAocjkKAXtbSNxw4l2yczy7gk04/9sqgvSJIqi0Ury+Yxi6mcV/SaNyMMrQPoguzh9kiPnW1QVOy/tJdgE1RQae8axR0IkOMSbDvy8AXge2AU4BvA18FdkXZ8ccSXIxqFMHO394EZ9ynYXfgfOAhYBH6MbXD8tKk2kKx+oJp7KWuGneS7DyRRuNmFK19EGXao5Piz9nNGMi26KQax0QVbNCSrB2kvZ3nP/m2P4wM4hfPnVvsBa7PuC+teAz4LfChb/tK4PvO6zEB+/UC66GEMZdDkOffk2kP4VakzzfRwQP6Qfmpi7ZQrL4QXWOols6mcf6k0bgZRWsfRBR7XIT6elGTNoYD76F0iqLI2h7tYguAp1B/mz0ez72noi42GA3cB5yBpuqeBN4GnseXGlSUg3QJEvVaJIjLVKeTt6PkrCrwgfO8NuC9BejEMBXYCRiHlh1CtgY9GRgLfA8Vy1rsbA8KwdZFWyhOX4inMbSPzqZx/oRp3IwitQ8iqj3mOs/7N2nnu8g+52bdwYQksUe72AKU8zM54PGa8/7sXHsajXaxwTXotiVulOpe5PD/CqUH/R5V7gaKc5AWouzz3YDTnG2XIc/558CZGfcjKesDpzuvHwp4/3WUjHYk+h8vAe5E04mvZNSHTYGbgLfQ/DQ0ri6CDp66aAvF6AvxNYb20Nk0zp8oGjejKO2DiGOP51AC7n4B7RwPfBYl1y4KeL9oktqjXWwBciC6fI9NgO1RZPXqfLoZmXaxwWnAFcASVGdpO2AYcIvz3r3INqe6O2SZpN2BwoNrCT5wrkCZ6F0oc/865K2dRv+QXVlcj5YaPoj6FsTdzsPLpAz7MBkYgq7OVjvb3KuLZlMTddEW8tcXkmkM1dfZNM6fqBo3owjtg4hjjw+A+WgqYggayECD8s3odg9F9DkKaezRDrbw04Gc07Oc5/Mov3BlO9hgfVRD6X3gJGAVms6DRsT0fuBLwI7uTv4I0jJaz3X6Hz/x7DsceV8voIJPfpYD3cAOKET7NMo1eD/CPxfUrx87780OeG9GhDb9nI/m3P9C4+q1aD6FfvBLaMzpgk5QbwE7A5sF7Je1tlFtHpUqaOuSVGOots6mcf7niSppHIck9njKefZOs01CV92XouXdrVjGwDhnxyXNsbEe0uks4EbkYIU5R8uwYwLgULRa8HfIRwHNePXSmM5zL8DWuDv5I0ivEuzcNON1z+tm02te/uF5PZ7oK926gY/5to1E3t6d6EfgpSdiuy7nANPQ6rvDgH/G3D8rpiObXIiy+70sRglwIwlOjkyqbRqbR6Eq2rqk0RiqqbNpLLrJ7zxRNY3jkMQeroO0H8rP2NXZfx7SMoxuBsY5Oy5Jj40NgHuA41B0dXLE7+vGjgmAg53nBzzbRqGpvP84f7u5R/+f3vM7SIel6ECYg3QSmktdCWyDCkOdFbHt7oBtncjIM1DSVVImoDnIF9D//2aKttJwKo2Q38MtPrcX/Q+eNNqmsXkYE6iGti5pNIZq6jwB09ilO2BbJ+nPExOolsZxSGqPp9HVtRtBuhVFMM4h2pROd8C2Tup1zo5LUltsBMxCScwXA9+J8Z3dAds6GXjHxE7O80rneRjwcfrmTI1xnue4G7LMQWrlIH0BeatLUKjrCVSRcxoKzZXFpWj+tAclHq4K+Eze87sdKKR6E5r7n9nkO3dEP0T/HLVpG43NSa4xVFPnKBpDcTqbxtUh7XllNVpdtQ9acXUYKhL4fD7djUw72iONLTZBS9LHAmcjG5RNu9mgw/P6I86z66885zzvis45TwIvuR/OykFyE7Tfp5Fs5nIQ8n6XA59D4fMr0f1Wrkflw8vgSpT9v8DpV7PwYEeT7VEZig6IrdDBMRmFrL1cja6Wb0Q/viD2QYmT3lUOA11blygad5NMY6imzlE1hmx0No3z1zhrkp5XXOaiYoY/QIPgFTn0MQ7tbI8kttgcJT7vh6I+dwXvVijtaoOFKDp9AvAzGho/hxzTWWiB2QTvTh1dXV1ZfPlwdIW3ABnZZQQqYrUGnQBf9bw33/nsaOS1xaUTJZuNJX6Y8AwUXlyHEkGDEg6XkSxx0M+2aFBZ6DwvQHq5eRV7IiOtQMub327SzkbAf53Xm6Kq5Xlpm4YitXXJS+M15PsbToppHJ1Okp0nstT4XDQ1tVuM70/bRhp7uJxOI9/o6+h2EmnopBrn7LT2KMoWs1BU9VmUXBzEFFRLKA6dDLxjYks0Hbg18Ad0wTccXYAdgXK8TsF30ZdVBMm9l8o8z7ad0ZK/XuDz9D3pgcqUP4LCjs0KkuXFMOd5PXweo4fHCTd0FAOtcB6gedrVyFhukS83ae8Cmh84oATfV1Ao8NOoZsNA19YlL43fopq/4aw0hug6m8b9iarxCNIXvovbRlJ7PON572/O83zgjhjfnQdVskdRthjtbN+X/vcrAx2HXTH6kZYq2SCojanoPDYu4LOrUI7RzUjXTZztY1Hi9jUo2bwPWUWQ7kHhq3EoJDhQuB3VajnJ+buVgUBXwjNR2Loq87NVxa9tVEzjeCTR2TSOx7PAL4EbSm4jLvehc9n+yEmqC2m1LMMWdSOPY+JxFBG7KmS/YcBfgZ+i/LqmZFFJexRaeriUZIXT2hm/B/sZmq/iG4zmkMdjg0oUklxhmMbxiauzadya4eieVe+ifMx9URG9Huf95agyuJeRaJpk94htHO98fgdPG9NQ9OETGf0fJwNHo6TgdnaOWmk5keAaZFdF3B+KsUW7k4WGrdrYAOU/j0a1unrpnwvtxU2CD11wkNRBGoRCezPRctB16K6+/roOdSKNgTZE99OZgvQy+pLFoGIahxOmc9iAYRq3Zhd0VbsY6ToR5ThsTEPjeehCysstKJL3YsQ2Zjnvu0nTFwMnolwKbw2puGzvfN/tKEdlCfCtFO2VTZiW01FunfuYhpaB3x1xf8jPFnUhCw3D2liHchdBCe3b0pieDCKyg5Q0B2l35AisQuW5r0XJm3XFNdAM4Bs0krv8BnoGGeg1GolzHc5+jyGH0uhLmLYQPqiYxuFE0Xk6ffMHJqJVH3djGkdhOkoxuMD5eynwKLrX1BvOtnloubbLsSiKd1yMNnrRPeoeQDlbl6Elyv78rbgcgZzff6EcxwlEL9JZRaJo6RYJvAz4CspTWRpj/7xsURey0DBKG0OQLecTHtl2HaSesM4ndZBeIPsb3VaZNAY6EA0yi2gsVT6N1iHAgUQWg4ppHE7UwaLZgHEQpnErhgKH0z+Zdi19T8R/RIX+tkAJuzeiZdNvxWgDVGhwPro4PYrWdzCIyg+dRx2Io+Xl6PwyBng5wf552KIOZKFh1DZGoSBNlGn/oyJ8Bsi2UGRdSWuguQwsZzIOWQwqYBqHEedEBcEDhmncmlEokuyPpO9N36rJC9B0/D6oFssHyHmN0wboCnsEsknVqxiXQVQtr0QR1UNoRI7i7A9mi2ZkoWHUNkaSQxFTO+GF08pAPZ6/R1J+ldl2I6q23kHlQvoOKkY4UXUGDRhnogHjZYyo9KLlzxt6th2CnKAez7b30HniaBSluxj9nuO0MQLVazkbrTS7Lpt/oVZE0XISqu80hr7OUdT9wWzRiiw0jNrGnii6nSnmIIVTqoFqThaDihFOVJ1bDRhGaxag3+lUdN+ncTQqH/f4PjsP1Z6ah3I447SxA5oqvQkVcZyE6kcdjOElTMvL0Z3oT0RR6W2cx0YR9wezRRhZaBj1uBqEakcNof/NeRNjDlI4pRqo5mQxqBjhRNE5bMAwWvM6Kn1wJMqfuASd8N/Bc3dwhx7gQ/qvzAxrYwt0c837aVxlL0KrgKZk+c/UgFZaLkWr8wYDT9EogroCOCDC/maLaGShYdTj6nLgGLTiObMoXlaFIuvOKchgm6JpiieAi5y/P/R85gbkIN2GBnMjnCjagsrc34HCsUsK7mMdaKVzL1q5tFnAfocCs4vp4oDhETR9aecIw6gw5iAZ7YINKkY7MwgVvRsPnIdKpawutUeGYbTEVrEZVcY7qOyBlp0bRjsyGtWQegmVqTDnyDAqjjlIRpWxQcWoC3OwnE/DaCvMQTKqzBxsUDEMwzBKwAYfwzAMwzAMH+YgGYZhGIZh+DAHyTAMwzAMw4c5SIZhGIZhGD7MQTIMwzAMw/DxPyU1d62GiXTxAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax - 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax + 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅───(Ax) + 2⋅─────(Ay) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: False): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOXUlEQVR4nO2de7BVVR3HPxd11Ai1MF+Jythw1VRACR8pgo+S0HJ85BO9I1k+UDExCRUvPgYfpJdJ0rIHSdqklGlipimICKN09SJqqViMMYBKUVO+wdsf3707+xz2OWe/9z7n/D4zZ/a9++y1zzrf39lr/fZav/XbbZ2dnRiGYRiGYRgl+uRdgSZlADAfeBlYChyfa22aD9M3fUzj/DDti4PZIn9ys0GbjSClwo7AdsiY2wHdQDvwbp6VaiJM3/QxjfPDtC8OZov8yc0GNoKUHOOBPzt/r0bGBHgLWAdsm0elmgjTN31M4/ww7YuD2SJ/CmEDc5CSYzDQ47N/GLAZ8PdMa9N8mL7pYxrnh2lfHMwW+VMIG5iDlBx+Bu0P3AWMA3qzrlCTYfqmj2mcH6Z9cTBb5E8hbGAOUjTagSeA94FlwHBgb8oNujlwPzANWJRx/Rod0zd9TOP8MO2Lg9kifwprA3OQwjMIeBYZcm9gEnAfsCUlg7YBs5DRZ2dew8bG9E0f0zg/TPviYLbIn0LbIA0HaQEa/joohXMnRX/gG8gjXQ68B/wbWIiG72rpMhN4GLjYKTsXeBxYA7zpHPNF4GTgOGTkHmCfCPX8JLAS6fnbCOXzII62kK2+YBqbxv7E1bgaWWvvh9lDmC3C0aw2qMqmCZ+vDzAE2EAp6ryInATcjqLj5wFvANuj/Ao/BkY7x1TOcw4AjkRDgF7WUz4cuJBknM9O4LNOPfZL4HxZEFVbyF5fMI1dTONy4mhcjTy096MTs4fZIjzNaoOqJP2hg4B+KKFT2jkKOpAhRkYo+yrwVWBn4HTgu8DZwB4oOv4E/JNRDcXf+dsf/4j7OOwFXAQ8AryAfkyNsLw0qraQrb5gGntpVo07iNZOxNG4Gllr70ee9ugg+za7Gq1siw6KcU0UwQY1SdpB2t/Z/smz71JkjEurlGkHPkBTc1nxBPA74OOK/WuAO5y/R/qU6wU2QQFjLochz78n0RrCbWju9dvo4gH9oLw0k7aQrb4QTGMons6mcfrE0bgaWWvvR1B7PIrqW9nhufEgvcAN6VTRl6Tt0Ui2eBrVt9rrydRrKprFBiOAB4Gz0FTdU8A7wPNUhAZl4SAtdLYHVinzfSTS+ITrEpWPnO16n/e6USM9HdgdGIOWHUKyBj0NGAX8ACXLWubsrxyCbSZtITt9IbjG0Fg6m8bpU0/jamSpvR9h7HEZ6givQ7q7TEcdy50ooLYIRLFHI9nifmCqz+sN5/15qdY0GI1ig2vRY0vcUaoH0M3Xb1B40B9Q5m4gGwfpORTMdYDP8ScBR6FArRd83s+aTYEznb8f8Xl/FQpGG42+42XAz9F04msJ1aEfcDPwDzQ/DSVtKi+eZtIWstEXwmkMjaOzaZw+QTSuRlba+xHWHkvRiqE9gbHOvslotONe4Ny0KhqSqPZoJFtMd47zvvoCu6DRvGvSqWZgGsUGY4ErgZdQnqWdgYHArc57DyDbnOEWSNJBakPDg+spb8Q+Apag+dWdPPv7Areg1OFTEqxHHG5ASw0fRp6kH3ejH+an0HDiFPRdKocdozIV6XQ1SqkOpbuLyuHXZtMW0tcXwmkMjaOzaZw+QTWuRhba+xHWHqDO5H3UIY8HrkffeSzp1zcocezRSLZwaUOjThPRDcPZ5G+LRrDBpiiH0ofAqcBaNJ0HpdHrh5ztbm6hSgdpBbXnOitfv/CUbUfe14voovLytLP1Dp9PQR7c5WipYC386vUz5715Pu/NqnM+Py5C8Q9/oXTHlDWfBy5EHu4dnv2r0N3G54CtKsqkoW1QmwelCNq6RNEYiq+zaZx+O1EkjcMQ1R4rgS5gVzTFuQjFJH0Y4DNX0Bptdlii2gI01TkLOA+4CTmt9VaMrcCuCYDD0WrB3yMfBTTj1UtpOs91yt5zC1Uu83+djZ2bWqzy/O03vebiNnwHoLm+PYBLgMVoSK0eXcA2FfuGAF9zyq+oeK8nwDm9XADMQKvvjgD+GbJ8UsxENrkERfd7WYY87CGUB6rG1TaOzYNQFG1domgMxdbZNBZdpNdOFE3jMES1B8Dbnr/HEXx1chet0WaHJaotNgPuAU5EI3pTA35eF3ZNABzqbOd69g1FU3n/cf53Y4/+P71X6SAdEaMCtRykRchTc+8Mb0Pe8AUEy5nQ5bOvAxl5Fgq6isoENAf5Ivr+b8U4VxzOoDTk92iN4/aj/OKJq20cm9djAsXQ1iWqxlBcnSdgGrt0+ezrIH47MYFiaRyGOPY4FcW/rAF2QMn8zgv4uV0++zporjY7LFFtsQUwBwUxTwS+F+Izu3z2ddB618TuznaNsx2IpvW8MVMjne18d0eSiSJrOUjrUKT+MBS9fwRKOPV8gp8fhcvR/GkPCgJd63NMkIY5Dm1oSPVmFIcxu8pn7oZ0q5yjNm2DsTXRNYZi6hxEY8hOZ9O4OMRtV76CRhheQtMTC1AW5RloOiUvGtEecWzRFy1JHwWcj66HvGk0G7R5/v6Es3X9leec7R7od/4U8Ip7cFIOkhug/SGlYLNKFqLEWD9Egl6Z0GdH5SoU/d8NfInqw4NtVfYHZQC6ILZDF8dUNH3g5Rp0h3YT+vH5MQwFsVZbIt2K2roE0biLeBpDsXQOqjEko7NpnL7GSRO1XTkEjVisRN/7baTFfahjPC6d6talke0RxRZbo8DnA9Coz13+xTKlUW2wFI2Ingz8ipLGzyHHdA5aYDbBW6its7MziQ9vR3cV3cjIfpxJKY7gHJSaPA4dKNhsFOGHCc9Cw4sbUPChX/DnCqIFDlayI+pUljrbbqSXO5e/DzLSarSk9p0q59kC+K/zdz88gWQkr20cstTWJQuNoTg6m8bB6SBaO5GkxuPRNOGeIT4/7jmi2mMQSjz4HnKUXvccuwS17yPQnXZYOihGmx3XHlnZYg4ayXsWBRf7MQ3lEgpDB613TWyLpgO3B/6IbvjakdN/NIrxOp2Km76kRpDcZ6ksrnHM35ztEuAnCX1uVAY6202o8Bg9PEl9Qwcx0GrnBZqnXYeM5Sb5coP2Lqb6hQMK8H0NDQXuCzzjea9VtXXJQmMojs5JaQzBdTaNNyaoxoOJn/gu7Dmi2uMBNDXyZcqdI9CjJR5DU0XVEnqmRZHskZUtRjj7h7Px88pA12FniHrEpUg28DvHdNSOjfE5di2KMboF6drX2T8KBW5fi4LNy0hqBOkeNHw1Bg0J+vGg8/6BqPFrBu5ET2M+1fm/loFAd1+z0RRCkvOzraBtUNLSGExnF9M4HM8CvwZuzPkchoirpdkiPmlcE0+iEbGr65QbCPwV+CWKdaxKEokih6Klh8upniTqNOBYFGDWLI0ebOzBfgH/IHWA/mgOeRzJdiqtom0Q0tIYTGcX07g27eiZVe+jeMzhKIlej/P+SpSN2ssQNE2yV8BznOQcv6vnHDPQ6MNnEvoezUItLSfhn4Ps6oDlIZg9W520r4nNUPzzCJQ3rZfqsdBQCoKvu/gjqoPUBw3tzUZLczegjJ7evA67oB/gnWi+8yXgOxE/rwjEMdDm6Hk605BecWklbSFYh5C0xtB6OtfrMEzj2gxCd7XLkK6TUIzDlpQ0XoxupLzcir7/ywHPMcd53w1gnwicgmIpvHmLWp16Ws5EsXXuawZaBn53wPJQ356tThbXxAYULwcKaN+R0vSkH4EdpKgxSHshR2AtSs99HQre9HI0akj/hea1JxA8yVjRcA00C/gmpeCuSgM9gwz0BqXAuTan3BPIoUyCVtIW1CFcjjqEcyh1CAejDiENjaH1dJ5JefzAJLTq425M4yDMRCEGFzv/LwceR8+aetPZtxgt13Y5AY3inRjiHL3ouWhzUZzQZLREuTJmqNUJoqWbJHAy8HUUp7I8RPl69mx1sromdkK2XEL9kW3XQeqpV/mkYpCanceQM+iN0/gpMpCbffM4NPWwNeUGOgTlEPE+n24stYcAW4kg2oKWlM5Fy0zdDsGdzjSN6xNUZ5fJKIB7FMoLYhrXZgC6MRpO+fTgj5z3Rjv/H4wyhvdHAbsvoxVBXSHO4bLIOfYYwj84t9kJo+UVqIMeBbwasnwte7Y6WV4TU1GfcCgJkmSiyGZlAHAkG68iWE+5BzoUjaJVeq8LSfahwM1EUG1BmWeXoNHKYyiP9TKNaxNGZyh1GCMpdRimcW2GopHkypH0/SnPmtyNpuOHoVwsH6E75DDnAHUGg5FNip7FOA+CankVGlE9jNLIUZjytezZ6mR5TQwhhYSy1uDVp5aBejz/DyH/7NWNRlBtwTqEOITR+SrgXNRhvIoRlF60/Hlzz77DUIPf49n3AWonjkWjdBNRhxDmHINRvpbz0aq/65P5Ck1FEC2noCn7kZQ7R0HLQ217tjpZXhP7UD66nQjmINUnVwM1OdYhZENQnWt1GEZtulFDPx0992kMpczHPRXHLka5pxajGM4w59gVxWPcjBJqTkE5ixKdWmgC6ml5BXoS/SloWmcH57VFwPJeqtmz1cnqmgD5MvuiWKRtkqm+OUhByNVATY51CNkQROd6HYZRm1Uo9cFoNP17Gfq9vovn6eAOPcDHbLy0ud45Po1ijR6idJPwAlrEMC3JL9ME1NJyOVop2R/Fvqz2vA4KUD6oPVudLK4JlyuA41HKgMRuoC1IOxinowaoH5qmWABc6vz/seeYG5GDdDvyho361NJ2G9SALQC+5SlzL9L5EIyg1NK5F60i28qn3OHAvGyq2DI8hqYvrY1oDsye8SmkhuYgGYZhpE8flLNrHHAhSpWyLtcaGXEwe8an8BraKjbDMIz0GYFySL2C8rwUqiMwQmP2jE/hNTQHyTAMI33mYzGfzcR8zJ5xmU/BNSx05QzDMAzDMPLAHCTDMAzDMIwKzEEyDMMwDMOowBwkwzAMwzCMCv4Htqx+6IcE8cgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay - 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay + 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅───(Ay) + 2⋅─────(Ax) + 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: False): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAOUUlEQVR4nO2de7BVVR3HPxd11JSyNBUKk6kRJQ1Q8pGGEJYaWo6PzAdyi6xMVMxnPq+PBh+kl5KszAkzbVLTsiCTVESUlMALSOWrGGNEE6KmfALe/vju7dl3373Pfpz9Ouf8PjN3zr37nHXOut/vOmv/9lq/tXZHV1cXhmEYhmEY7cqAsivQggwB5gF/BpYCR5Zam9bCtM0X07dYTO/qYF5Ug9J86LCRocwZBGyPjNweWAwMA14rs1ItgmmbL6ZvsZje1cG8qAal+WAjQ9kwBfiL8/tqZCTAP4F1wHZlVKpFMG3zxfQtHldz07tcrO1Xg0r4YMFQNowAegKOjwY2A/5RaG1aC9M2X0zf4gnS3PQuHmv71aASPlgwlA1BZm4L/BSYDPQWXaEWwrTNF9O3ePyam97lYG2/GlTCBwuGkjMMeBB4A1gO7A3sTl8zNwfuAaYBjxVcv2bGtM0X07d4ojQ3vYvB2n41qKwPFgwlYxfgCWTi7sD5wJ3AltTM7ABmIcNvLbyGzYtpmy+mb/FEaW56F4O1/WpQaR/yCIbmo2Gt/XJ470bZFvgKijqfA14H/gMsQMNxUXrMBOYAZzjlZwMPAC8BLzuv2R84FjgCGdwD7JGwnlsDq5COv0pYtgwa1RWK09almTQ2ffMnC439RGmepd5BNJsHLll7UXTbD6IZvWhFH0LZNOP3GwCMBDZSywivEscAN6KM9YeAF4Ad0F4GPwYOdV4TNEc5BDgIDet52UDfIb4FNB5kdgEfcOqxZ4PvVQSN6ArFauvSRfNobPrmT6Ma+4mjeZZ6B9FFc3ngkqUXZbT9ILpoPi9a0YdQsv7QXYCBaMOkPPcF6EQGjE1Y7hngc8AHgROAbwFfBnZFGetHEb7J0yiCg7y9CM6ET8tw4HTgPmAZakRVX+LZiK5QnLYuzaax6RuPTtL1C9C4xn6K1txP2W28k2p4UbYP0LxetJoPdck6GNrLefyT7/ijyIywn4czrkcYDwK/Ad72HX8J+IHz+9iQsr3AJii5y+VAFOX3ZFZDuAHNm34TfXFADSmIVtAVitPWJa7Gpm862rEN+ylacz9JPLgf1dd/YnPzN3qBq7KvYihZelG2DxDfi7NQfc8KeZ9hwJsoFaUIWsGHMcC9wCQ03fYI8CrwJL5UnqynycKCoXuAuQGv/xKwExqCK5v1zuOGkOcXo4Y4HbgGRcffd57ryagOxwPjgO+iTaiWO8f3JFi/VtAVitHWJYnGpm9y2rUN+ylScz9JPTgHWAJcCfwaXcGD6j4JuAklu1aBpF6U6QMk82KB87hvyHt9DwUUUzKuYxqawYcrgAvRNN/FqG1vDdwNnAj8HgWYq6G4YGh6wGuvRZ3dLODyjOuRlE2Bk5zf7wt5zYsoaWwa8AU03HcLiuKfzaAOA5Ema9H8MtSuIsLmmFtBV8hfW5ekGpu+yWjnNuynKM39pPFgKVq5MwmYiHS/AI1k3AF8PZ+qJiaNF2X5AMm9WIKSlPcJeO4Y4NMoqFoW8HyRNIMPE4GLgKdQMLoPMBS162nIm8+joOhayDYY6kBDfxuob1YHyio/xXk8jfI3t7oKLfWbg6LFMG5zfrxcklEdLgMGo6h/nXPMvYoIG9720sy6Qr7aujSisekbTbu3YT9FaO4nrQcXoVU8Xejq+dvo/51I/2mSskjrRRk+QHIv1gOL0NTOYBRAAGwFXIduT1FEvaOoug+booDnLeA4YA2akoPa6NtvUTC0s1vInzO0kvrz9/6fn3nKDkPR1lNoQ6UgNkFXHaegobIpRHd2QXX6ifPcQwHPzYp4Pz+no+j0r+iLXwYfRR3/CmpzsaAvw1rgI8C765RPqutK0vsclyro6qURjbNqt1lq3Er6QjZtOMt+AaqncRSNeLAK6AY+hKZjHkM5RG/F+NyVmBd+0nrxqPPonSq7BCUxn4eWttdjJa1/voziU2jl3u9QPAKateqlNiXnBvivu4X8I0PPEx7IBPGi5/ewKTKXzYDbgaPR1cdlMT+jG9jGd2wkiupuQeZ76Yn5vgCnAjPQ6rfxwL8SlM2SmciLM6nN17ssR0lqIwlOnEujayM+x6EqunpJq3Hadpunxq2kL6TTuJv8+gWopsZRNOIBwCue3ycTf0VwN+aFn7ReuMHQPii3ZVfnPRYiLaPopvXPl1F80nmc7Tk2Ck3H/df5e5Dz+M4UnT8YGt9ABeoFQ1sAdwETgLOB7yR43+6AY53I3FnAvATv5WUqcD2KHMejIcgyOJHaEN79dV63J/2/OGl1bcTnKKZSDV29pNW4kXabl8ZTaR19Ib3G3QHHOmm8X4BqahxFIx6AphOmo5VCO6KN8U6J+dndAcc6MS8guRePoREMd2ToBjRqeirxpoy7A4510jrnyzh82Hl8yXkcCryXvvlNY53Hee6BLHOGwoKhrdDStnHAN9AmTmVzHpr37EFJaWtCXpd3vsJ7UPLWepTAGPR5O6PG559jNl2j6UBD0Wk0Nn3jYW24fBrxAOCzaNRgBZpimI92Hp6BpkPKIo4XVfIBGvdiHVp1NhqtRBuPvhdP5lDXuDTTd6LD8/u7nEc3NlniPO6K2vkjwNPui7MKhtzk6beoJYiBGsYcNOTXie5CWzYXoxUqi4HPUH+or6POc1EMQV+G7dEX4zI07OmlG12FXYMaXBCjUVKdd/VBO+vqJY7Gl5NcY9NXWBsOJyuNs6CbdB4AHIBG5lah//kVpMOd6AR4ROa1jUdcL6rkAzTmhcsCtFHjD1HgcVG2VUxEM34nlqKRzmOBX1DTeQkKRO9CC72megt1dHV1ZfHhw9AVxGJktMtsdNXxBEpmCmIa2n8gCZ0oKWwcyYb9JqGhwo0oSTAoGW0l6RL8/AxCJ5GlzuNipJM7D78HMmc1sBvaCCqILYD/Ob8PRAlfeemaliJ19ZKXxndh+kLzteFO0vULkK3GU9C0xm4J65CmfCMejECbWr6OgqLnPa9fhPryMegKOimdlO9FkT5AY154OYlaftDJ6NYXjdBJ+efLIr3YDk3n7QD8AV3UDUMB/iEoR/EEfBd2WY0MufcbWeg5NgB9kdzn/fckAc07dmVUhzgMdR43wRcVeniYbMxd7fyA/s91yKQXnGNugt0ZhH9pQEm4z6KhvY9RW3oJ7amrl7w0Nn2FteG+xNV4BI1tJJekfFoP1qJl0b3AwfQNhEC3XpiLpnzCNgHMi6y8KNIHSO/F477n/+48LgJuTvD5WVPl78R01IdNCHjtGpQTdB3qZ7Zyjo9DF2FXoCTwPmQ1MnQ7GpaagIa+24Gb0H4cxzl/1zNnNJpuGE415lWrjF/XuJjG8TB98+cJ4JfA1SWVN0Sz+nAvOo/siwKiViBrLx5Go1yXRpQbCvwN+DnKwQoli3uTjUJLYp8j+aZkzYw/Uv04wSvptkX5EJOxk0gc0lxBmMbxMX2zZRi6h9MbKF9yb7QhXQ+6hUXQnlKXxiwP2nn4TbT/j8sMNLLw/uz/naYlSscoL6LKr0I7cnsZibwZnuH/cTxwOEqabtZAKE8vNkO5yWPQ/ku99M1T9uMmqUcmoKcNhgagIexb0VLAjehutv79FFqFtOZsju69NA3pZPQlixOBaRxOFh286RvOLuiKdTnS9XyUl7Al0ngmyrtyf2ag5b63xSwPyl9bTi2J9mzgiyj3wbsvUDsTR8d6XsQpvxBd8Hq5Ho209ptySchOzmfehHJ7VgDnNvieZZG3FxtRfhto8cUgalPuQcQOhtLmDA1HJ/41aFvrK1GSZSvimjML+Cq1RCy/OY8jc15AJ5MOp8yDKGg0+hKlK+hEcB46EZxM7UTwCXQiMI3DiaNvVAdv+tZnJkoLOMP5+zngAeBQ4GXnmLvJ2wXonkxjndfFLd/rlJ2N8nouQMuC/Tk+7UxcH8K8mBuj/EK0/YPLUWiU9egM6n8Iutj4N7qZ6FTib3hZNYrwYrBTfhHRI9VuMNQTVfG0wdBTZDPF1gzEMTfInAPQ0r5l1JanTqT+kF47kcWJYH9M4zDi6BvVwZu+4QwBDqJ/8vcG+ne8FyKdxwLPpCh/P+pbrgQOI3yX/3YkiY7Q34u45f+INgR9H0qOvgYtOV/bQN1dfuT8NDtFeTEKDb7EmbI/LMZrgOzvWt9qNGLOAtonYExKVicC0ziYrDp40zecUWhU2D8ivhd9dx2+GI3MHUhtRChJedAFwAjkRZV3/i2DJDoGeRG3/GKUDjEa7VuzHl1wGDWK8mIkOWxCaR1dfeqZ0+P5eyTl7hDabMTVFexEkIa4+no7+DOxDj4JvWjJ8eaeYweiE2WP8/claHp3LH0DobjlQW3/bnQFfS+6m7xRI66OYV7ELf8m6uMPRyPUZ6Pvi1GjKC/2QKPVmWLBUH1KNaeFsRNBvlgHnz+LkX7T0b2QJlDbRbsHTQGcjnLcXkW7Eu+INtyLUx60cGAO2uvnFnQSOZjajSiNeDrW8yJOeZeFaI+uhShX1uhLUV4MQPszDab/TWlTY8FQfUo1p4WxE0G+WAefPy+irQYORVO356B2+hq62j0XbUnwKLXNK1cD+8Uo/yyaurwPeeJeBCxDiwqm5fqfNRdROnZQ34uo8l56gLfpvwLTEEV5cSFwJFoNm9kFclabLrYyJ6DOZyCadpgPnOX8/bbnNVejYOhGdHIx6lNP123Ql2U+8DVPmTuQxgdgRBGn3YK23L8ZjcKtKLiOhtFMzEWJvta/tyAWDBlGe2MdvGGEMwDtaTYZOA1tK7Ou1BoZuWCryQyj/fB28LujfT4Mw+jPGLTP1tNo6wkLhFoUC4YMo/2wDt4w4jEPy61tCywYMoz2Yx7WwRuGYbyDdYiGYRiGYbQ1FgwZhmEYhtHWWDBkGIZhGEZbY8GQYRiGYRhtjQVDhmEYhmG0Nf8HOllbarzaO/8AAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jz + 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay + 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz + 2⋅───(Az) - 2⋅───(Az) - 2⋅───(Az) + 2⋅─────(Ax) + 2⋅─────(Ay) + 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*0 p*0 = D p (even: False): True\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAOFklEQVR4nO2de9QUZR3HP69gaoSSmHdUjh1RvABCXhK5aBlmlqWkqChHslK8YGKSFwQvB1NUPEmZVKKmndTyeM20BLxRIvji/ZpkHDDFrMwbSm9/fGfa2Xlndmd2n93Z2fl9ztkz7zs7++yz398zv3nm9/yeZzqmT5+OYRiGYRiGK9bJugItQD9gAfAssAz4Rqa1yQ+mWzpMLzeYjtli+mdLbvTvsMgFWwCbIkNtCiwBBgDvZVmpHGC6pcP0coPpmC2mf7bkRv+iRi5OAp7z/l6FDAXwBvA2sEkWlcoBpls6TC83mI7Z49vA9G8+uWz/Re1cDAI6I/YPA9YF/tbU2uQH0y0dppcbTMfsibKB6d8cctn+rXNRoi9wPTAR6Gp2hXKC6ZYO08sNpmP2hG1g+jePXLb/InQuBgAPAB8ATwF7ALtQbqz1gNuAmcCjTa5fq2K6pcP0coPpmD3VbGD6N462af/t3rnYAXgMGWkXYCpwC7ABJWN1APOQQW9oeg1bE9MtHaaXG0zH7KlmA9O/cbRV+2/12SJ9ga8DBwG7AlsBa5D413qv/1b4/P3AamBcYN8vgANR1i3AcOBB4MnAMeO978gj9WoGplta3Uyv2tpZmCx1/BTwPPodtwOH1FleM8jCBo1sx0W3QVu1/571FtBgxgI/QRmy84HXgM3Q3N6fIdHHEj3m1A/4AgorBfmY8hDTw7RXBKcezcB0S6ub6VVbOwuTtY7TkWPtAnZvQPmNIAsbNLIdT6e4Nmi79t8MZzcBVXhUDZ99EfgqsDVwFPAD4DhgR5Qheyjxi4gMAdZSmrbjM5TozNt2oR7NwHRLq1ue9ZpANudmFFnqOBA4BbgX3RH2o0Wn94UwG2SPKxu0nfaVOhfD0Upg/0a9p78C51T5jGseAO6ke1jpdeBq7+9RMZ/tAnqg5BefkahX1umshmIEcAdwLAqNPQS8CzwB7O34u6pRj2ZguqXVzfQqJ2k7C9NMHcNchcayv0cp3Dwk4rj7UD3DFwt/HLwLuLgxVYykaDY4HdXx9JgyBgAfomGDZuHKBq2uvc8jqK5xr4X+gXEdhQuRgfoggeYCGwIXAGfX/huc8pG3/Tjm/SWooc0CtkdjYtd773U6rMcFqBPm9zBvR438t8Bg4PeUxsuypppmYLpFUUk306s7SdpZmGbpGOZIYDTwY7RQkT92HRUaPgNdRC5EFwKfWajDNxcl4bUC7WiDh73tXjHl/AjZ5STXFayRNDZode19bgNmRLxe896f7x8Y1bk4DXUgLkW9l+8DJ3gVAPVush477gkc4/19b8wxK9Ec4AOBx5FjuA4tk/qSo3qMR9GcZ9Bc5K2B/sAV3nu3A72Box19Xz0k0QxMtzDVdDO9yknazsI0Q8cwvZGfewuNOUPpzi3KuS5DGfo7Id0BzkI+8Wbguw2qZ1ra1QZLgfeBPSPKGQt8EZhDebJjVqS1Qatr7zPLOzb46gVsg6J35/sHhjsJW6I7pEVo7CiYhNKJskn7oDGZLLkYTdW5B92xxXEj+tGfRqGpaUiItBnUUfRE84zXoOze1SiMBaUe9l3edjsH31cvSTUD0y1IEt1MrxJp2lmYRuoYxQzk885DyyhD6c4tLix8DlqDYDq6Q74I/c7xDaxnWtrVBh8Bi9H1Z8vA/l7A5Wg57GkNqmdaarFBK2sfRQeKeExBnbrjCNQ13LkYR8lQUT/oXW+7NubLltN9DOZa7735Ee/NS/ADwpyCxtyep3T3kAX7oeza3wFPe/uGot/V6f3va/h+hXKWU3kMK/z6ZQ11bRXNwHRLSyP1atdzMwk7AyejaNDVgf0r0Z3cZ9FQcJgVwGxgWxSGfxTlYKxJ8J3LKUabTUotNnjE2waHRqahaN6ZwL+qfOdyzAZQe/v36YF8xAnAJaijXTYjJjwV9WvIUd0TU+BWqIOxMub92SiyEWSwV+51yLBBOmPKiWMScCV63Oz+wD9Sft4l+3rbuwP7hqAQ1jve//4YeKWw1ivoTigpcdrH0UqagemWFld6zaY452YS5iD/dxrdb5aeQneOg4lODnwz8PdEkj+RsihtNim12MDvXOyJ8o129D6/CLXjapgNRD3tf13gJuAwFMGbEfUFPUN/74HCrlEny+eAzVEINi5MMzti3wTkwOahhLRamYzGmJ9GRnujjrJcsL23fd3b9kfhrOD42ihvu6BCOfs7rVU5k2ktzcB0S4srvWZH7JtAe56b1Tia0tDSfRWO253uznUcGnd+HfnDU9HdWxKK0maTUKsNHkV3yH7k4ip0Fz2JZOt5mA3qa//rA7eihNMpwGVxHw52LnZG02A+gYZLwh0If/rPNZVq3SDORGNYnShpZ3XEMUkalis6An9/0tsO9bZLve2OKKT9EPBCk+oVJIlm0DzdOkL/51m3LDTLs17QGg9X6kCh3kvR+P0NRNdrO3RxCI87fxndHT+DNH8Q+Ba6U32+ITVORpFs8Daa1TAMzXTYHy1i9URjqpuYVvIbldiI2rXvhabCjwZORLrHEuxc+E6rDzCG8qGRScDh6G7pzur1d8q5KAN1CXAA8WGm8MWrVvoh0TdFBpiBwm9hlqG7mMOBX1PKrl2KjHMrmoI02VG90pBUMzDdgjSzrRVJL3DXzurlfBRxuARdEKIYhhIHgxnzw5HWK9BvfRP9/lvQReWQxlS3KkWygc/DaOGnn6KL+DkNqGMamn2NqofZ1Kb9RqhPsCeKeF7f/WPlBJ8tMgf1Ru5Ey5DehE6gfYF90PSYAyhllSZlAkocG0360OuxKGS7FiVPRSXrLKe25LM4tkAOf5m3XYLWEwgPFW2Cwl+bAX9AF4sByNmMQeNSRxF9wWgkWWgGpltaWkGvCbTGuXkSuoHZKWUd0paxK+qUrfKOezfmuPWB/3h/90YPlFqIEmaHo3F7n8XIGY9A0aNmUiQbBJOVj6GUX3E8WmY7K1zZoBn616P93Shy9xhKLo9iJlqrA+geuVgDHIF6Yscgx/Yq6hleRrpEGBf097Y9iL8zW4hbw63yXqAxs7eRDq+FjluNxrovR46ll7d/NDLEBSipp9m40gxMtzAu25rpVWIQ9S8UFC5jFrLBQYF9fhLbqcQ7VpCfewkNOe2G1hHpAr5EeccCNGX/fhRqjlvcqVEUyQZ/Drz3qrddDPy8rhrXjysbNEP/WrVfjHwPKC8z/PwTkA+bHtzhRy56oMzz5ygNj7QTc9FT38ZVOzDEMBS6Hkjl8bL+wF+AX6FxwHbBdEtPLZoVWS/Q3dBvgB86LGMhisacV1fNikOebHAHumDuhS587UCe9E+Ev87FQPTM+KUVjs0ztfQK+6JxpYlUT8TxE1+yTipyjemWnrSaFU2vAeh5DB+gKW97oMWGOr33x6LQ6raBz1yJ7qQ+k6CMdVEEdgRa/6CL/D7WvlFU0m8FWnE0yGBkk4EJy2ikDY4EDkbJhHntWFQ7B6YSvebGeQnLaIlzwO9c+NGKPDstHxfOaz20hvpMNPWpGkVw+kmcTtF0q9dJFE2vHdDd1VNIp6kod2QDSprd6r3vJ+lNQUO1Y1AOWLUy1qK8CFDy2RaUQrpGdf0WoWUHglyBInLPJizDtQ228b5jLsoRegY9liKPJDkH5iDN/NeVaOrzjQnLaIlzwM+5CE9vyyu+6POAb1NKfAs7rzOR8zqekvP6PHJeHd7nH0Ch6iT4Tr+z0kEtTBLdqjmdoumWRLM5lI+1TkWzPm6keHqB9LgHjfkCvAz8ET1P4e/evi70vI67UX7DWWja5yspytgSDfMupjWm/7US1fRbhBL7fQ5F0bjDUpQBbm0wBnXA/4nyXyaTfOGyViOJdu9QWiDvLOCbKO/q5RRlZH4O+J2Lk71X3nHhvPZBF4AnKU0vG0/lsNJXnNQ+O5LoVs3pFE23ep3EcIqlVz80Cy2cDPYx3TtL9yGneCH6zY+nLGMImoVjHYtykuj3J5S8vzFK+rsETbN8K0UZ4NYG15DN+kquSXMOgB4geiLyGS+mLCPzcyC8/HeeceG8QHOos37qazNJqls1p1Mk3Vw4iSLpBXJ2a5HDCzKU7qsE7oc6rutQvsph0jIGk9+ho0aSRL8laLx+GFrn4CPUkU5TBpgNokhzDpyLIqIjKUUs0pQxmIz1byfnVkn0ztC+OOdVRJLqFnQ6p9Hd6RSJNG3tXPQo7pGUOhZFpAvNSlsvsG8kuoB1BvYNQmt2nIhmBVxUQxm70hqP3W41kuj3IbooHYyibVPQuZ6mDDAbRJFUu2loyH4U5R2LNGVkrn87dS5cOK8iklS3ak6nSLhwEkVjCWpDs9DzUg6itMpfp7fdFg01XYoWSZqG1pbYN0UZIL+2Gxp37uP4d+SZpPotQmu1LELPkqqlDLNBd5JodzZ6quoRKEK8ufdaP0UZ0AL6t1PnwoXzKiJJGytUdjpFwoWTKBor0XTbA9Ew5BnoHHwPzdTaGD1e4C5KHf4nUQL2zIRl+JyNHoO+Art5CJJUv070bKnw7LA0ZZgNulNNuw40C6YvevrrqsBr74Rl+GSuf3D573bgKOSIeqOQ9YPogWu9Ue/tEW/fdwKfuRn17oZTXCrpFnyA3bFoRbxBaDpYkamkWRfKbN8w4nP7AfObU0XDqIn70RDepKwrYuSXdutcGI3FnI5htCfroHV+JqKZgwNJ/xwpw/g/7TRbxGgMQaezC5pOaRhGezECrbnyAppmbh0Loy6sc2FUw5yOYbQ/C2ivHDwjY6xzYVRjAeZ0DMMwjBTYRcMwDMMwDKdY58IwDMMwDKdY58IwDMMwDKdY58IwDMMwDKdY58IwDMMwDKf8D6uI5J+gjP6uAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ - 2 \\frac{d^{2}}{d y^{2}} φ - 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax - 2 \\frac{d^{2}}{d yd t} Ay - 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) - 2⋅───(φ) - 2⋅───(φ) + 2⋅─────(Ax) - 2⋅─────(Ay) - 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOHElEQVR4nO2de7BVdRXHPxd11AwtMR8kKqMjahqg5GNUBLXS0Gp85BNlohrfYmqSD7z4GHyQwiRZmRNK2lT00NRMU1BRUkIvIJaKxRgjaBA1pfgAb3989+7su+8+Z//2Pvt1zl2fmTPn3H3O/p3f/a6z92/t9Vu/tTs6OzsxDMMwDMMwavQruwNtyiBgLvASsAg4rtTetB+mb/6YxuVh2lcHs0X5lGaDDosg5cIOwLbImNsCC4EhwDtldqqNMH3zxzQuD9O+Opgtyqc0G1gEKTvOA/7svV6JjAnwFrAW2KaMTrURpm/+mMblYdpXB7NF+VTCBuYgZcdQoCti+whgE+Dvhfam/TB988c0Lg/TvjqYLcqnEjYwByk7ogw6ALgbGA90F92hNsP0zR/TuDxM++pgtiifStjAHKR0DAEeB94FlgD7A3vT06CbAr8GpgDPFNy/Vsf0zR/TuDxM++pgtiifytrAHKTk7A48hwy5NzAR+AWwOTWDdgAzkdFnFd7D1sb0zR/TuDxM++pgtiifStsgDwfpSRT+OiiHtrNiAPA15JEuA9YB/wbmofBdI11mAA8BF3r7Pgg8BqwC3vQ+czBwEvBlZOQuYJ8U/fwosALp+ZsU+5dBM9pCsfqCaWwaR9OsxvUoWvsozB7CbJGMdrVBXTbOuL1+wDBgA7Ws8ypyInA7yo6fA7wObIfqK/wIONr7THiecxBwJAoBBllPz3DgPLJxPjuBT3r92DeD9oogrbZQvL5gGvuYxj1pRuN6lKF9FJ2YPcwWyWlXG9Ql6y/dHeiPCjrlXaNgHDLEqBT7vgJ8EdgROA34NvBVYA+UHX880cWohhPt/O1HdMZ9M+wFXAA8DCxGP6ailpeOo3htoVh9oVyNIb3OpnH+NKNxPYrWPgqzh+jLthhH8eedKKpgg4Zk7SDt5z3/KbT9EWSQsHj+3GI3cEPGfWnE48BvgQ9D21cB3/dej4rYrxvYCCWM+RyGPP+uTHsItyF9vokOHtAPKky7aAvF6gvuGkO1dDaN86cZjetRtPZRuNjjYtTXi+u0MQR4D6VTFEXW9mgVWwA8jfpb7/FE7j0V7WKDkcD9wJloqu4p4G3gBUKpQUU5SJciUa9DgvhM9Tp5B0rOqgIfeM/rI95biE4MU4FdgTFo2SFka9BTgdHA91CxrCXe9qgQbLtoC8XpC8k0htbR2TTOnziN61Gk9lG42mOe93xgnXa+i+xzXtYdTEkae7SKLUA5P5MjHq9778/JtadutIoNrkW3LfGjVPchh/9XKD3o96hyN1Ccg7QIZZ/vCYz1tl2OPOefA2dl3I+0bAyc4b1+OOL9N1Ay2tHof7wUuAtNJ76aUR/6AzcDa9D8NNSuLqIOnnbRForRF5JrDK2hs2mcPy4a16Mo7aNIYo/nUQLuARHtnAh8FiXXLo54v2jS2qNVbAFyIDpDjy2AnVBk9Zp8uulMq9hgLHAlsBTVWdoRGAzc6r13H7LN6f4OWSZpd6Dw4HqiD5wrUSZ6J8rcvx55a2PpHbIrixvQUsOHUN+iuMd7BJmUYR8mAwPR1dlab5t/dVFvaqJdtIX89YV0GkP1dTaN88dV43oUoX0USezxAbAATUUMRAMZaFC+Bd3uoYg+u9CMPVrBFmE6kHN6tvd8PuUXrmwFG2yMaii9D5wCrEbTeVCLmD4AfAnYxd8pHEFaTuO5zvDjJ4F9hyDv60VU8CnMCmAasDMK0T6Dcg3ed/jnovr1Y++9ORHvzXRoM8wFaM79L9SuXovmU+gHv5TanC7oBLUG2A3YMmI/09adtBpDtXU2jZs7f7lQJY2TkMYeT3vPwWm2Seiq+zK0vLsRy8nXFtCa9mjm2NgInRfOBm5CDlacc7ScvnPeacThaLXg75CPAprx6qY2nedfgK3zdwpHkF4j2rmpxxuB1/Wm14L8I/B6PO4r3aYBHwttG4a8vbvQjyBIl2O7PucC09HquyOAfybcPytmIJtchLL7gyxBCXDDiE6ONG3daEZjqKbOprFo5vwVR9U0TkIae/gO0gEoP2MPb//56PcaR562gNa1R9pjYxPgXuAEFF2d7Ph90+g7551GHOo9PxjYNhxN5f3H+9vPPfr/9F7YQTqiiQ7EOUinoLnUVcD2qDDU2Y5tT4vYNg4ZeSZKukrLBDQH+SL6/99qoq1mOJ1ayO+RBp/bl94Hj2nrRjMaQzV1noBp7NPM+asRE6iWxklIa49n0NW1H0G6DUUwzsVtSicvW0Dr2iOtLTYDZqMk5kuA7yT4zmkR28bRfuedOHb1nld5z4OBj9MzZ2qU9zzX35BlDlIjB+kLyFtdikJdT6KKnNNRaK4sLkPzp10o8XB1xGfynt/tQCHVm9Hc/6w637kL+iGG56hNWze2Ir3GUE2dXTSG4nQ2jatDs+eVtWh11Qi04uoIVCTwhXy660wr2qMZW2yBlqSPBs5BNiibVrNBR+D1R7xn31953nveA51zngJe9j+clYPkJ2i/Ty3ZzOcQ5P2uAD6HwudXofut3IDKh5fBVSj7f6HXr3rhwY46210ZhA6IbdHBMRmFrINcg66Wb0I/vihGoMTJ4CqHvq6tj4vG00inMVRTZ1eNIRudTeP8Nc6atOcVn3momOEP0CB4ZQ59TEIr2yONLbZCic8HoKjP3dG7FUqr2mARik6fBPyMmsbPI8d0NlpgNiG4U0dnZ2cWXz4EXeEtREb2GYqKWK1DJ8DXAu8t8D47EnltSRmHks1GkzxMeCYKL25AiaBRCYfLSZeQHGYHNKgs8p4XIr38vIp9kJFWouXNb9dpZzPgv97r/qhqeV/X1icvjddRzd+waZw/WWp8Hpqa2rOJ/iRtoxl7+JxBLd/o6+h2EmVRJXsUZYvZKKr6HEoujmIKqiWUhHGUf94p+pjYBk0Hbgf8AV3wDUEXYEehHK/TCF30ZRVB8u+lMj+wbTe05K8b+Dw9T3qgMuWPorBjvYJkeTHYe96IkMcY4AniDe1ioJXeAzRPuxYZyy/y5SftXUj9AweU8PgqCgV+GtVs6Ova+uSl8Rqq+RvOSmNw19k07o2rxkNpvvBd0jbS2uPZwHt/854XAHcm+O48qJI9irLFSG/7/vS+XxnoOOxM0I9mqZINotqYis5jYyI+uxrlGN2CdN3C2z4aJW5fi5LNe5BVBOleFL4ag0KCfYU7UK2WU7y/GxkIdCU8C4WtqzI/W1XC2rpiGicjjc6mcTKeA34J3FhyG0m5H53LDkROUrvQrJZl2KLdyOOYeAJFxK6O2W8w8Ffgpyi/ri5ZVNIejpYeLiNd4bRWJuzBfob6q/gGoDnk8dig4kKaKwzTODlJdTaNGzME3bPqXZSPuT8qotflvb8CVQYPMgxNk+zl2MaJ3ud3DrQxHUUfPpHR/3EqcCxKCm5l56iRlhOJrsl0teP+UIwtWp0sNGzUxiYo/3kkqtXVTe9c6CB+EnzsgoO0DlI/FNqbhZaDbkB39Q3XdWgnmjHQpuh+OlOQXkZPshhUTON44nSOGzBM48bsjq5qlyBdJ6Ich82paTwfXUgFuRVF8l5ybGO2976fNH0JcDLKpQjWkErKTt733YFyVJYC32qivbKJ03IGyq3zH9PRMvB7HPeH/GzRLmShYVwbG1DuIiihfQdq05NRODtIaXOQ9kKOwGpUnvs6lLzZrvgGmgl8g1pyV9hAzyIDvU4tca7D2+9x5FAaPYnTFuIHFdM4HhedZ9Azf2AiWvVxD6axCzNQisGF3t/LgMfQvabe9LbNR8u1fY5HUbwTErTRje5R9yDK2bocLVEO528l5Sjk/P4L5ThOwL1IZxVx0dIvEng58BWUp7Iswf552aJdyEJDlzYGIlsuID6y7TtIXXGdT+sgvUj2N7qtMs0Y6GA0yCymtlR5LI1DgH2JLAYV0zge18Gi3oBxCKZxIwYBR9I7mXY9PU/Ef0SF/rZGCbs3oWXTaxK0ASo0uABdnB5D4zsYuPJD79EOJNHyCnR+GQW8kmL/PGzRDmShoWsbw1GQxmXa/xiHzwDZFopsV5o10Dz6ljOZhCwGFTCN40hyooLoAcM0bsxwFEkOR9L3o2fV5IVoOn4EqsXyAXJek7QBusIeimxS9SrGZeCq5VUoonoYtchRkv3BbFGPLDR0bWMYORQxtRNePI0M1BX4exjlV5ltNVy1DQ4qF9FzUDHicdUZNGCchQaMVzBc6UbLnzcNbDsMOUFdgW3vofPEsShKdwn6PSdpYyiq13IOWml2fTb/QlvhouUkVN9pFD2dI9f9wWzRiCw0dG1jHxTdzhRzkOIp1UBtThaDihGPq86NBgyjMQvR73Qquu/TGGqVj7tCn52Pak/NRzmcSdrYGU2V3oyKOE5C9aMOxQgSp+UV6E70J6Oo9PbeYzPH/cFsEUcWGroeV/1Q7aiB9L45b2rMQYqnVAO1OVkMKkY8LjrHDRhGY95ApQ+ORvkTl6IT/jsE7g7u0QV8SO+VmXFtbI1urvkAtavsxWgV0JQs/5k2oJGWy9DqvAHA09SKoK4EDnLY32zhRhYauh5XVwDHoRXPmUXxsioU2e6chgzWH01TPAlc7P39YeAzNyIH6XY0mBvxuGgLKnN/JwrHLi24j+1AI5270cqlLSP2OxyYU0wX+wyPoulLO0cYRoUxB8loFWxQMVqZfqjo3XjgfFQqZW2pPTIMoyG2is2oMsFBZW+07NwwWpGRqIbUy6hMhTlHhlFxzEEyqowNKka7MBfL+TSMlsIcJKPKzMUGFcMwDKMEbPAxDMMwDMMIYQ6SYRiGYRhGCHOQDMMwDMMwQpiDZBiGYRiGEcIcJMMwDMMwjBD/Ax10d6205P4xAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax + 2 \\frac{d^{2}}{d y^{2}} Ax + 2 \\frac{d^{2}}{d z^{2}} Ax - 2 \\frac{d^{2}}{d yd x} Ay - 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) + 2⋅───(Ax) + 2⋅───(Ax) - 2⋅─────(Ay) - 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOOElEQVR4nO2de/AVZRnHPz/UUSPUwrwlKmMDaiqghJcUwUtJaDle8ooykuUFFROTUPGHl8ELKUySll1I0ialTBMzTUFEGCX0h6ilYjHGACpFTXkHf/3x3e3sOew5Z++7Z8/zmTmz5+zZd/c93+fsvs++7/M+29HZ2YlhGIZhGIZRoUfeFSgpfYB5wMvAUuD4XGtTPkzf9DGN88O0Lw5mi/zJzQYd1oOUCjsC2yFjbgcsAfoD7+ZZqRJh+qaPaZwfpn1xMFvkT242sB6k5BgL/Nl5vxoZE+AtYB2wbR6VKhGmb/qYxvlh2hcHs0X+FMIG5iAlxwCgy2f9YGAz4O+Z1qZ8mL7pYxrnh2lfHMwW+VMIG5iDlBx+Bu0N3AWMAbqzrlDJMH3TxzTOD9O+OJgt8qcQNjAHKRr9gSeA94FlwBBgb6oNujlwPzAFWJhx/Vod0zd9TOP8MO2Lg9kifwprA3OQwtMPeBYZcm9gAnAfsCUVg3YAM5HRZ2Vew9bG9E0f0zg/TPviYLbIn0LbIA0HaT7q/joohX0nRW/gG8gjXQ68B/wbWIC67xrpMgN4GLjYKTsHeBxYA7zpbPNF4GTgOGTkLmCfCPX8JLAS6fnbCOXzII62kK2+YBqbxv7E1bgeWWvvh9lDmC3CUVYb1GXThPfXAxgIbKASdV5ETgJuR9Hxc4E3gO1RfoUfAyOcbWrHOfsAR6IuQC/rqe4OXEAyzmcn8FmnHvslsL8siKotZK8vmMYupnE1cTSuRx7a+9GJ2cNsEZ6y2qAuSR+0H9ALJXQqcp6IV4GvAjsDpwPfBc4G9kDR8Sfgn4xqEP7O3/74R9zHYS/gIuAR4AX0Z8pqeulo9CcfFqFsVG0hW30hX43jYBqnTxyN65G19n6043XFj3a3RRTKaIOGJO0g7e8s/+RZdyk6KS6tU6Y/8AEamsuKJ4DfAR/XrF8D3OG8H+ZTrhvYBAWMuRyGPP+uRGsIt6Gx12+jkwf0h/JSJm0hW30hmMZQPJ1N4/SJo3E9stbej6D2eBTVt7bBc+NBuoEb0qmiL0nbo5Vs8TSqb73Xk6nXVJTFBkOBB4Gz0FDdU8A7wPPUhAZl4SAtcJYH1inzfSTS2ITrEpWPnOV6n++WoIv0VGB3YCSadgjJGvQ0YDjwA5Qsa5mzvrYLtkzaQnb6QnCNobV0No3Tp5nG9chSez/C2OMy1BBeh3R3mYoaljtRQG0RiGKPVrLF/cBkn9cbzvdzU61pMFrFBteix5a4vVQPoJuv36DwoD+gzN1ANg7ScyiY6wCf7U8CjkKBWi/4fJ81mwJnOu8f8fl+FQpGG4F+42XAz9Fw4msJ1aEXcDPwDzQ+DRVtak+eMmkL2egL4TSG1tHZNE6fIBrXIyvt/Qhrj6VoxtCewChn3UTU23EvcG5aFQ1JVHu0ki2mOtt5Xz2BXVBv3jXpVDMwrWKDUcCVwEsoz9LOQF/gVue7B5BtznALJOkgdaDuwfVUX8Q+Ahaj8dWdPOt7Areg1OGTEqxHHG5AUw0fRp6kH3ejP+anUHfiJPRbarsdozIZ6XQ1SqkOlbuL2u7XsmkL6esL4TSG1tHZNE6foBrXIwvt/QhrD1Bj8j5qkMcC16PfPIr06xuUOPZoJVu4dKBep/HohuFs8rdFK9hgU5RD6UPgVGAtGs6DSu/1Q85yN7dQrYO0gsZjnbWvX3jK9kfe14vopPLytLP0dp9PQh7c5WiqYCPi1CsoF6H4h79QuWPKms8DFyIP9w7P+lXobuNzwFY1ZdLQ9mfOd3N9vpsZ8Ld4KYK2LlE0huL/h03j9tI4DFHtsRKYBuyKhjgXopikDwMccwXtdV0JSlRbgIY6ZwLnATchp7XZjLEV2DkBcDiaLfh75KOARry6qQznuU7Ze26h2mn+r7Oxc9OIVZ73fsNrLu6F7wA01rcHcAmwCHWpNSNOvYJwATAdzb47AvhnyPJJMQPZ5BIU3e9lGfKwB1IdqBpX22nANjXrBgJfc8qvqPmuK8A+vRRFW5coGkOx/8OmsWgnjcMQ1R4Ab3vejyH47ORptNd1JShRbbEZcA9wIurRmxzweHZOiEOd5RzPukFoKO8/zmc39uj/w3u1DtIRMSrQyEFaiDw1987wNuQNX0CwnAlx6tWMcWgM8kXnOG+leKxGnEGly+/RBtvtR/XJE1fbaT7rRqML2UwU0BaVcRRDW5eoGkNx/8PjMI1d2kXjMMSxx6ko/mUNsANK5ndewONO81k3mnJeV4IS1RZbALNREPN44HshjmnnhNjdWa5xln3RsJ43ZmqYs5znrkgyUWQjB2kditQfjKL3j0AJp55P8PhRuByNn3ahINC1PtsEuTDHoQN1qd6M4jBm1Tnmbki32jFq0zYYWxNdYyimzkE0hux0No2LQ9zryldQT89LaHhiPsqiPB0Np+RFK9ojji16oinpw4Hz0fmQN61mgw7P+084S9dfec5Z7oH+508Br7gbJ+UguQHaH1IJNqtlAUqM9UMk6JUJHTsqV6Ho/yXAl6jfPdhRZ31Q+qATYjt0ckxGwwderkF3aDehP58fg1EQa70p0u2orUsQjacRT2Mols5BNYZkdDaN09c4aaJeVw5BPRYr0e9+G2lxH2oYj0unuk1pZXtEscXWKPD5ANT7dpd/sUxpVRssRT2iJwO/oqLxc8gxnY0mmI3zFuro7OxM4uD90V3FEmRkP86kEkdwDkpNnhdnoW7eDSj40C/4cwXRAgdr2RE1Kkud5RKklzuWvw8y0mo0pfadOvvZAviv874XnkAyktd2NAqoHE74rvAstXXJQmMozn/YNE6fJDUei4YJ94xRn7D7iGqPfijx4HvIUXrds+1idH0fiu60wzKaYlxX4tojK1vMRj15z6LgYj+moFxCWVAkG4Tdx7ZoOHB74I/ohq8/cvqPRjFep1Nz05dUD5L7LJVFDbb5m7NcDPwkoeNGpa+z3IQaj9HDkzQ3dBADrXZeoHHadchYbpIvN2jvYuqfOKBAu9dQV+C+wDOe79pVW5csNIbi6JyUxhBcZ9N4Y4JqPID4ie/C7iOqPR5AQyNfpto5Aj1a4jE0VFQvoWdaFMkeWdliqLN+CBs/rwx0HnaGqEdcimQDv31MRdexkT7brkUxRrcgXXs664ejwO1rUbB5FUn1IN2Duq9Goi5BPx50vj8QXfzKwJ3oacynOp8bGQh09zULDSEkOT7bDtoGJS2NwXR2MY3D8Szwa+DGnPdhiLhami3ik8Y58STqmby6Sbm+wF+BX6JYx7okkShyEJp6uJz6SaJOA45FAWZluejBxh7sF/APUgfojcaQx5Bso9Iu2gYhLY3BdHYxjRvTHz2z6n0UjzkEJdHrcr5fibJRexmIhkn2CriPk5ztd/XsYzrqffhMQr+jLDTScgL+uYCuDlgegtmz3Un7nNgMxT8PRXnTuqkfCw2VIPimkz+iOkg9UNfeLDQ1dwPK6OnN67AL+gPeicadXwK+E/F4RSCOgTZHz9OZgvSKSztpC8EahKQ1hvbTuVmDYRo3ph+6q12GdJ2AYhy2pKLxInQj5eVW9PtfDriP2c73bgD7eOAUFEvhzVvU7jTTcgaKrXNf09E08LsDlofm9mx3sjgnNqB4OVBA+45Uhif9COwgRY1B2gs5AmtReu7rUPCml6PRhfRfaFx7HMGTjBUN10AzgW9SCe6qNdAzyEBvUAmc63DKPYEcyiRoJ21BDcLlqEE4h0qDcDBqENLQGNpP5xlUxw9MQLM+7sY0DsIMFGJwsfN5OfA4etbUm866RWi6tssJqBfvxBD76EbPRZuD4oQmoinKtTFD7U4QLd0kgROBr6M4leUhyjezZ7uT1TmxE7LlYpr3bLsOUlezyicVg1R2HkPOoDdO46fIQG72zePQ0MPWVBvoEJRDxPt8ulE07gJsJ4JoC5pSOgdNM3UbBHc40zRuTlCdXSaiAO7hKC+IadyYPujGaAjVw4M/cr4b4Xw+GGUM740Cdl9GM4KmhdiHy0Jn22MI/+DcshNGyytQAz0ceDVk+Ub2bHeyPCcmozbhUBIkyUSRZaUPcCQbzyJYT7UHOgj1otV6rwtI9qHAZSKotqDMs4tRb+UxVMd6mcaNCaMzVBqMYVQaDNO4MYNQT3JtT/r+VGdNXoKG4wejXCwfoTvkMPsANQYDkE2KnsU4D4JqeRXqUT2MSs9RmPKN7NnuZHlODCSFhLJ2wWtOIwN1eT4PJP/s1a1GUG3BGoQ4hNH5KuBc1GC8ihGUbjT9eXPPusPQBb/Ls+4DdJ04FvXSjUcNQph9DED5Ws5Hs/6uT+YnlIogWk5CQ/bDqHaOgpaHxvZsd7I8J/ahunc7EcxBak6uBio51iBkQ1CdGzUYRmOWoAv9VPTcp5FUMh931Wy7COWeWoRiOMPsY1cUj3EzSqg5CeUsSnRooQQ00/IK9CT6U9Cwzg7Oa4uA5b3Us2e7k9U5AfJl9kWxSNskU31zkIKQq4FKjjUI2RBE52YNhtGYVSj1wQg0/HsZ+r++i+fp4A5dwMdsPLW52T4+jWKNHqJyk/ACmsQwJckfUwIaabkczZTsjWJfVnteBwUoH9Se7U4W54TLFcDxKGVAYjfQFqQdjNPRBagXGqaYD1zqfP7Ys82NyEG6HXnDRnMaabsNuoDNB77lKXMv0vkQjKA00rkbzSLbyqfc4cDcbKrYNjyGhi/tGlEOzJ7xKaSG5iAZhmGkTw+Us2sMcCFKlbIu1xoZcTB7xqfwGtosNsMwjPQZinJIvYLyvBSqITBCY/aMT+E1NAfJMAwjfeZhMZ9lYh5mz7jMo+AaFrpyhmEYhmEYeWAOkmEYhmEYRg3mIBmGYRiGYdRgDpJhGIZhGEYN/wM+zXTODA74lwAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jy - 2 \\frac{d^{2}}{d t^{2}} Ay + 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay - 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az - 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy - 2⋅───(Ay) + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅─────(Ax) + 2⋅─────(Az) - 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAONklEQVR4nO2de7QVVR3HPxd1qSllaSoUJquWKGmAko80hLDU0HL5yHwgFFmZqJjPfF4fLXyQXkqyMleYaSs1LQsySUVESeniBaTyVSxjiSZErfIJePvjO+OZO3fmzOPM65zz+6x115w7Z/Y5+3x/e/b8Zu/f/k1HZ2cnhmEYhmEY7cqAsivQggwB5gN/BpYCR5Zam9bCtM0X07dYTO/qYLaoBqXZocNGhjJnELA9MuT2QDcwDHitzEq1CKZtvpi+xWJ6VwezRTUozQ42MpQNU4G/OK9XI0MC/BNYB2xXRqVaBNM2X0zf4nE1N73Lxdp+NaiEHcwZyoYRQE/A/tHAZsA/Cq1Na2Ha5ovpWzxBmpvexWNtvxpUwg7mDGVDkDG3BX4KTAF6i65QC2Ha5ovpWzx+zU3vcrC2Xw0qYQdzhpIzDHgQeANYDuwN7E5fY24O3ANMBx4ruH7NjGmbL6Zv8URpbnoXg7X9alBZO5gzlIxdgCeQEXcHzgfuBLakZswOYDYy+K2F17B5MW3zxfQtnijNTe9isLZfDSpthzycoQVoWGu/HD67UbYFvoK8zueA14H/AAvRcFyUHrOAucAZTvk5wAPAS8DLzjH7A8cCRyAD9wB7JKzn1sAqpOOvEpYtg0Z1heK0dWkmjU3f/MlCYz9RmmepdxDNZgOXrG1RdNsPohlt0Yp2CGXTjD9vADAS2EgtIrxKHAPciCLWHwJeAHZAuQx+DBzqHBM0RzkEOAgN63nZQN8hvoU07mR2Ah9w6rFng59VBI3oCsVq69JJ82hs+uZPoxr7iaN5lnoH0Ulz2cAlS1uU0faD6KT5bNGKdggl6y/dBRiIEiZVMT/DM8DngA8CJwDfAr4M7Ioi1o8iPMnTKIKdvL0IjoRPy3DgdOA+YBlqREUsLZyMGvXYFGUb0RWK09alLI3TYvrmT6Ma+ylacz9l22Ay5fUnXsq2A5Rvi7S0mh3qkrUztJez/ZNv/6PoxAj7ezjjeoTxIPAb4G3f/peAHzivx4aU7QU2QcFdLgciL78nsxrCDWje9JvoxAE1pCBaQVcoTluXuBqbvuloxzbsp2jN/SSxwf2ovv4Lmxu/0QtclX0VQ8nSFmXbAeLb4ixU37NCPmcY8CYKRSmCVrDDGOBeYBKabnsEeBV4El8oT9bTZGHO0D3AvIDjvwTshIbgyma9s90Q8n43aogzgGuQd/x9572ejOpwPDAO+C5KQrXc2b8nwfq1gq5QjLYuSTQ2fZPTrm3YT5Ga+0lqg3OAJcCVwK/RHTyo7pOAm1CwaxVIaosy7QDJbLHQ2e4b8lnfQw7F1IzrmIZmsMMVwIVomu9i1La3Bu4GTgR+jxzM1VCcMzQj4NhrUWc3G7g843okZVPgJOf1fSHHvIiCxqYDX0DDfbcgL/7ZDOowEGmyFs0vQ+0uImyOuRV0hfy1dUmqsembjHZuw36K0txPGhssRSt3JgETke4XoJGMO4Cv51PVxKSxRVl2gOS2WIKClPcJeO8Y4NPIqVoW8H6RNIMdJgIXAU8hZ3QfYChq19ORbT6PnKJrIVtnqAMN/W2gvrE6UFT5Kc72NMpPbnUVWuo3F3mLYdzm/Hm5JKM6XAYMRl7/OmefexcRNrztpZl1hXy1dWlEY9M3mnZvw36K0NxPWhtchFbxdKK752+j3zuR/tMkZZHWFmXYAZLbYj2wGE3tDEYOBMBWwHXo8RRF1DuKqtthU+TwvAUcB6xBU3JQG337LXKGdnYL+WOGVlJ//t7/9zNP2WHI23oKJVQKYhN013EKGiqbSnRn10id4nA68k7/ik78Mvgo6vhXUJuLBZ0Ma4GPAO+uUz6privpr9tPnPceCnhvdvyf8g5V0NVLIxpbu42mCm04S32hehpH0YgNVgFdwIfQdMxjKIborRjfu5L260+iSGuLR52td6rsEhTEfB5a2l6PlbRXvxPEp9DKvd8hfwQ0a9VLbUrOdfBfdwv5R4aeJ9yRCeJFz+uwKTKXzYDbgaPR3cdlMb+jkTpFcSowE61+Gw/8K0HZLJmFbHEmtfl6l+UoSG0kwYFzaXTtArbx7RuJPOVb0AnlpSfGZ3qpiq5e0mps7TYeRbfhPPWFamocRSM2AHjF83oK8VcEd9F+/UkUaW3hOkP7oNiWXZ3PWIS0jKLd+p0gPuls53j2jULTcf91/h/kbN+ZovM7Q+MbqEA9Z2gL4C5gAnA28J0En9tIneoxDbgeeY7j0RBkGZxIbQjv/jrH7Un/Eyetrl0B+yajzms2MD/m5wQxjWro6iWtxtZu41FGG85LX6imxlE0YgPQdMIMtFJoR5QY75SY390VsG8yrdufRNGILR5DIxjuyNANaNT0VOJNGbdTvxPGh53tS852KPBe+sY3jXW2890dWcYMhTlDW6GlbeOAb6AkTmVzHpr37EFBaWtCjss7XuE9KHhrPQpgDPq+nVHj888xm67RdKCh6DQam77xsDZcPo3YAOCzaNRhBZpiWIAyD89E0yFlEccWVbIDNG6LdWjV2Wi0Em08Oi+ezKGucWmmc6LD8/pdztb1TZY4211RO38EeNo9OCtnyA2efotagBioYcxFQ36T0VNoy+ZitEKlG/gM9Yf6Ouq8F8UQdDJsj06My9Cwp5cudBd2DWpwQYxGQXXe1QftrKuXOBpfTnKNTV9hbTicrDTOgi7S2QDgADQytwr95leQDneiC+ARmdc2HnFtUSU7QGO2cFmIEjX+EDkeF2VbxUQ04zmxFI10Hgv8gprOS5Ajehda6DXNW6ijs7Mziy8fhu4gupGhXeagu44nUDBTENNR/oEimISGbTeiIMGgYLSVpAvw8zMIXUSWOttupJM7D78HMs5qYDeUCCqILYD/Oa8HooCvPHSdjIIex5F8WLtIXb3kpfFdtG+79dJsbbgRstR4KprW2C1lXZKUb8QGI1BSy9eRU/S85/jFqC8fg+6gkzKZ8vuTIu0AjdnCy0nU4oNORo++KINmPSe2Q9N5OwB/QDd1w5CDfwiKUTwB341dViND7vNGFnn2DUAnkvu+/5kkoHnHzozqEIehznYTfF6hh4fJxrirnT/Q71yHjPSCs88NsDuD8JMGFAz3LBra+xi1pZfQnrp6yUtj01dYG+5LXI1H0FgiuSTl09pgLVoW3QscTF9HCPTohXloyicsCWBeZGWLIu0A6W3xuO/9vzvbxcDNCb4/a6p8TsxAfdiEgGPXoJig61A/s5Wzfxy6CbsCBYH3IauRodvRsNQENPTdDtyE8nEc5/xfzzij0XTDcKoxr1pl/LrGxTSOh+mbP08AvwSuLqm8IZrVDvei68i+yCFqBbK2xcNoxPHSiHJDgb8BP0cxWKFk8WyyUWhJ7HMkT0rWzPg91Y8TvJJuWxQPMQW7iMQhzR2EaRwf0zdbhqFnOL2B4iX3RgnpetAjLIJyu1waszwo8/CbKP+Py0w0svD+7H9O0xKlY5QtosqvQhm5vYxEthme4e84HjgcBU03qyOUpy02Q7HJY1D+pV76xin7cYPUIwPQ0zpDA9AQ9q1oKeBG9DRbfz6FViGtcTZHz16ajnQy+pLFhcA0DieLDt70DWcXdMe6HOl6PopL2BJpPAvFXbl/M9Fy39tilgfFry2nFkR7NvBFFPvgzQvUzsTRsZ4t4pRfhG54vVyPRlr7TbkkZCfnO29CcVYrgHMb/MyyyNsWG1F8G2jxxSBqU+5BxHaG0sYMDUcX/jUorfWVKMiyFXGNMxv4KrVALL9xHkfGeQFdTDqcMg8ip9HoS5SuoAvBeehCcDK1C8En0IXANA4njr5RHbzpW59ZKCzgDOf/54AHgEOBl519bpK3C9AzmcY6x8Ut3+uUnYPiei5Ay4L9MT7tTFw7hNliXozyi1D6B5ej0Cjr0RnU/xB0s/Fv9DDRacRPeFk1irDFYKf8YqJHql1nqCeq4mmdoafIZoqtGYhj3CDjHICW9i2jtjx1IvWH9NqJLC4E+2MahxFH36gO3vQNZwhwEP2DvzfQv+O9EOk8FngmRfn7Ud9yJXAY4Vn+25EkOkJ/W8Qt/0eUEPR9KDj6GrTkfG0DdXf5kfPX7BRli1Fo8CXOlP1hMY4Bsn9qfavRiHEW0j4OY1KyuhCYxsFk1cGbvuGMQqPC/hHxveibdfhiNDJ3ILURoSTlQTcAI5Atqpz5twyS6Bhki7jlu1E4xGiUt2Y9uuEwahRli5HkkITSOrr61DNOj+f/kZSbIbTZiKsr2IUgDXH19XbwZ2IdfBJ60ZLjzT37DkQXyh7n/0vQ9O5Y+jpCccuD2v7d6A76XvQ0eaNGXB3DbBG3/Juojz8cjVCfjc4Xo0ZRttgDjVZnijlD9SnVOC2MXQjyxTr4/OlG+s1Az0KaQC2Ldg+aAjgdxbi9irIS74gS7sUpD1o4MBfl+rkFXUQOpvYgSiOejvVsEae8yyKUo2sRipU1+lKULQag/EyD6f+A4NSYM1SfUo3TwtiFIF+sg8+fF1GqgUPR1O05qJ2+hu52z0UpCR6llrxyNbBfjPLPoqnL+5BN3JuAZWhRwfRcf1lzEaVjB/VtEVXeSw/wNv1XYBqiKFtcCByJVsNmdoOcVdLFVuYE1PkMRNMOC4CznP/f9hxzNXKGbkQXF6M+9XTdBp0sC4CvecrcgTQ+ACOKOO0WlHL/ZjQKt6LgOhpGMzEPBfpa/96CmDNkGO2NdfCGEc4AlNNsCnAaSiuzrtQaGblgq8kMo/3wdvC7ozwfhmH0ZwzKs/U0Sj1hjlCLYs6QYbQf1sEbRjzmY7G1bYE5Q4bRfszHOnjDMIx3sA7RMAzDMIy2xpwhwzAMwzDaGnOGDMMwDMNoa8wZMgzDMAyjrTFnyDAMwzCMtub/HKBRUDAFMKcAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jz - 2 \\frac{d^{2}}{d t^{2}} Az + 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az - 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay - 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz - 2⋅───(Az) + 2⋅───(Az) - 2⋅───(Az) - 2⋅─────(Ax) + 2⋅─────(Ay) - 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAOFklEQVR4nO2de9QUZR3HP69gaoSSmHdUjh1RvABCXhK5aBlmlqWkqChHslK8YGKSFwQvB1NUPEmZVKKmndTyeM20BLxRIvji/ZpkHDDFrMwbSm9/fGfa2Xlndmd2n93Z2fl9ztkz7zs7++yz398zv3nm9/yeZzqmT5+OYRiGYRiGK9bJugItQD9gAfAssAz4Rqa1yQ+mWzpMLzeYjtli+mdLbvTvsMgFWwCbIkNtCiwBBgDvZVmpHGC6pcP0coPpmC2mf7bkRv+iRi5OAp7z/l6FDAXwBvA2sEkWlcoBpls6TC83mI7Z49vA9G8+uWz/Re1cDAI6I/YPA9YF/tbU2uQH0y0dppcbTMfsibKB6d8cctn+rXNRoi9wPTAR6Gp2hXKC6ZYO08sNpmP2hG1g+jePXLb/InQuBgAPAB8ATwF7ALtQbqz1gNuAmcCjTa5fq2K6pcP0coPpmD3VbGD6N462af/t3rnYAXgMGWkXYCpwC7ABJWN1APOQQW9oeg1bE9MtHaaXG0zH7KlmA9O/cbRV+2/12SJ9ga8DBwG7AlsBa5D413qv/1b4/P3AamBcYN8vgANR1i3AcOBB4MnAMeO978gj9WoGplta3Uyv2tpZmCx1/BTwPPodtwOH1FleM8jCBo1sx0W3QVu1/571FtBgxgI/QRmy84HXgM3Q3N6fIdHHEj3m1A/4AgorBfmY8hDTw7RXBKcezcB0S6ub6VVbOwuTtY7TkWPtAnZvQPmNIAsbNLIdT6e4Nmi79t8MZzcBVXhUDZ99EfgqsDVwFPAD4DhgR5Qheyjxi4gMAdZSmrbjM5TozNt2oR7NwHRLq1ue9ZpANudmFFnqOBA4BbgX3RH2o0Wn94UwG2SPKxu0nfaVOhfD0Upg/0a9p78C51T5jGseAO6ke1jpdeBq7+9RMZ/tAnqg5BefkahX1umshmIEcAdwLAqNPQS8CzwB7O34u6pRj2ZguqXVzfQqJ2k7C9NMHcNchcayv0cp3Dwk4rj7UD3DFwt/HLwLuLgxVYykaDY4HdXx9JgyBgAfomGDZuHKBq2uvc8jqK5xr4X+gXEdhQuRgfoggeYCGwIXAGfX/huc8pG3/Tjm/SWooc0CtkdjYtd773U6rMcFqBPm9zBvR438t8Bg4PeUxsuypppmYLpFUUk306s7SdpZmGbpGOZIYDTwY7RQkT92HRUaPgNdRC5EFwKfWajDNxcl4bUC7WiDh73tXjHl/AjZ5STXFayRNDZode19bgNmRLxe896f7x8Y1bk4DXUgLkW9l+8DJ3gVAPVush477gkc4/19b8wxK9Ec4AOBx5FjuA4tk/qSo3qMR9GcZ9Bc5K2B/sAV3nu3A72Box19Xz0k0QxMtzDVdDO9yknazsI0Q8cwvZGfewuNOUPpzi3KuS5DGfo7Id0BzkI+8Wbguw2qZ1ra1QZLgfeBPSPKGQt8EZhDebJjVqS1Qatr7zPLOzb46gVsg6J35/sHhjsJW6I7pEVo7CiYhNKJskn7oDGZLLkYTdW5B92xxXEj+tGfRqGpaUiItBnUUfRE84zXoOze1SiMBaUe9l3edjsH31cvSTUD0y1IEt1MrxJp2lmYRuoYxQzk885DyyhD6c4tLix8DlqDYDq6Q74I/c7xDaxnWtrVBh8Bi9H1Z8vA/l7A5Wg57GkNqmdaarFBK2sfRQeKeExBnbrjCNQ13LkYR8lQUT/oXW+7NubLltN9DOZa7735Ee/NS/ADwpyCxtyep3T3kAX7oeza3wFPe/uGot/V6f3va/h+hXKWU3kMK/z6ZQ11bRXNwHRLSyP1atdzMwk7AyejaNDVgf0r0Z3cZ9FQcJgVwGxgWxSGfxTlYKxJ8J3LKUabTUotNnjE2waHRqahaN6ZwL+qfOdyzAZQe/v36YF8xAnAJaijXTYjJjwV9WvIUd0TU+BWqIOxMub92SiyEWSwV+51yLBBOmPKiWMScCV63Oz+wD9Sft4l+3rbuwP7hqAQ1jve//4YeKWw1ivoTigpcdrH0UqagemWFld6zaY452YS5iD/dxrdb5aeQneOg4lODnwz8PdEkj+RsihtNim12MDvXOyJ8o129D6/CLXjapgNRD3tf13gJuAwFMGbEfUFPUN/74HCrlEny+eAzVEINi5MMzti3wTkwOahhLRamYzGmJ9GRnujjrJcsL23fd3b9kfhrOD42ihvu6BCOfs7rVU5k2ktzcB0S4srvWZH7JtAe56b1Tia0tDSfRWO253uznUcGnd+HfnDU9HdWxKK0maTUKsNHkV3yH7k4ip0Fz2JZOt5mA3qa//rA7eihNMpwGVxHw52LnZG02A+gYZLwh0If/rPNZVq3SDORGNYnShpZ3XEMUkalis6An9/0tsO9bZLve2OKKT9EPBCk+oVJIlm0DzdOkL/51m3LDTLs17QGg9X6kCh3kvR+P0NRNdrO3RxCI87fxndHT+DNH8Q+Ba6U32+ITVORpFs8Daa1TAMzXTYHy1i9URjqpuYVvIbldiI2rXvhabCjwZORLrHEuxc+E6rDzCG8qGRScDh6G7pzur1d8q5KAN1CXAA8WGm8MWrVvoh0TdFBpiBwm9hlqG7mMOBX1PKrl2KjHMrmoI02VG90pBUMzDdgjSzrRVJL3DXzurlfBRxuARdEKIYhhIHgxnzw5HWK9BvfRP9/lvQReWQxlS3KkWygc/DaOGnn6KL+DkNqGMamn2NqofZ1Kb9RqhPsCeKeF7f/WPlBJ8tMgf1Ru5Ey5DehE6gfYF90PSYAyhllSZlAkocG0360OuxKGS7FiVPRSXrLKe25LM4tkAOf5m3XYLWEwgPFW2Cwl+bAX9AF4sByNmMQeNSRxF9wWgkWWgGpltaWkGvCbTGuXkSuoHZKWUd0paxK+qUrfKOezfmuPWB/3h/90YPlFqIEmaHo3F7n8XIGY9A0aNmUiQbBJOVj6GUX3E8WmY7K1zZoBn616P93Shy9xhKLo9iJlqrA+geuVgDHIF6Yscgx/Yq6hleRrpEGBf097Y9iL8zW4hbw63yXqAxs7eRDq+FjluNxrovR46ll7d/NDLEBSipp9m40gxMtzAu25rpVWIQ9S8UFC5jFrLBQYF9fhLbqcQ7VpCfewkNOe2G1hHpAr5EeccCNGX/fhRqjlvcqVEUyQZ/Drz3qrddDPy8rhrXjysbNEP/WrVfjHwPKC8z/PwTkA+bHtzhRy56oMzz5ygNj7QTc9FT38ZVOzDEMBS6Hkjl8bL+wF+AX6FxwHbBdEtPLZoVWS/Q3dBvgB86LGMhisacV1fNikOebHAHumDuhS587UCe9E+Ev87FQPTM+KUVjs0ztfQK+6JxpYlUT8TxE1+yTipyjemWnrSaFU2vAeh5DB+gKW97oMWGOr33x6LQ6raBz1yJ7qQ+k6CMdVEEdgRa/6CL/D7WvlFU0m8FWnE0yGBkk4EJy2ikDY4EDkbJhHntWFQ7B6YSvebGeQnLaIlzwO9c+NGKPDstHxfOaz20hvpMNPWpGkVw+kmcTtF0q9dJFE2vHdDd1VNIp6kod2QDSprd6r3vJ+lNQUO1Y1AOWLUy1qK8CFDy2RaUQrpGdf0WoWUHglyBInLPJizDtQ228b5jLsoRegY9liKPJDkH5iDN/NeVaOrzjQnLaIlzwM+5CE9vyyu+6POAb1NKfAs7rzOR8zqekvP6PHJeHd7nH0Ch6iT4Tr+z0kEtTBLdqjmdoumWRLM5lI+1TkWzPm6keHqB9LgHjfkCvAz8ET1P4e/evi70vI67UX7DWWja5yspytgSDfMupjWm/7US1fRbhBL7fQ5F0bjDUpQBbm0wBnXA/4nyXyaTfOGyViOJdu9QWiDvLOCbKO/q5RRlZH4O+J2Lk71X3nHhvPZBF4AnKU0vG0/lsNJXnNQ+O5LoVs3pFE23ep3EcIqlVz80Cy2cDPYx3TtL9yGneCH6zY+nLGMImoVjHYtykuj3J5S8vzFK+rsETbN8K0UZ4NYG15DN+kquSXMOgB4geiLyGS+mLCPzcyC8/HeeceG8QHOos37qazNJqls1p1Mk3Vw4iSLpBXJ2a5HDCzKU7qsE7oc6rutQvsph0jIGk9+ho0aSRL8laLx+GFrn4CPUkU5TBpgNokhzDpyLIqIjKUUs0pQxmIz1byfnVkn0ztC+OOdVRJLqFnQ6p9Hd6RSJNG3tXPQo7pGUOhZFpAvNSlsvsG8kuoB1BvYNQmt2nIhmBVxUQxm70hqP3W41kuj3IbooHYyibVPQuZ6mDDAbRJFUu2loyH4U5R2LNGVkrn87dS5cOK8iklS3ak6nSLhwEkVjCWpDs9DzUg6itMpfp7fdFg01XYoWSZqG1pbYN0UZIL+2Gxp37uP4d+SZpPotQmu1LELPkqqlDLNBd5JodzZ6quoRKEK8ufdaP0UZ0AL6t1PnwoXzKiJJGytUdjpFwoWTKBor0XTbA9Ew5BnoHHwPzdTaGD1e4C5KHf4nUQL2zIRl+JyNHoO+Art5CJJUv070bKnw7LA0ZZgNulNNuw40C6YvevrrqsBr74Rl+GSuf3D573bgKOSIeqOQ9YPogWu9Ue/tEW/fdwKfuRn17oZTXCrpFnyA3bFoRbxBaDpYkamkWRfKbN8w4nP7AfObU0XDqIn70RDepKwrYuSXdutcGI3FnI5htCfroHV+JqKZgwNJ/xwpw/g/7TRbxGgMQaezC5pOaRhGezECrbnyAppmbh0Loy6sc2FUw5yOYbQ/C2ivHDwjY6xzYVRjAeZ0DMMwjBTYRcMwDMMwDKdY58IwDMMwDKdY58IwDMMwDKdY58IwDMMwDKdY58IwDMMwDKf8D6uI5J+gjP6uAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle ρ + 2 \\frac{d^{2}}{d x^{2}} φ - 2 \\frac{d^{2}}{d y^{2}} φ - 2 \\frac{d^{2}}{d z^{2}} φ + 2 \\frac{d^{2}}{d xd t} Ax - 2 \\frac{d^{2}}{d yd t} Ay - 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ + 2⋅───(φ) - 2⋅───(φ) - 2⋅───(φ) + 2⋅─────(Ax) - 2⋅─────(Ay) - 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOHElEQVR4nO2de7BVdRXHPxd11AwtMR8kKqMjahqg5GNUBLXS0Gp85BNlohrfYmqSD7z4GHyQwiRZmRNK2lT00NRMU1BRUkIvIJaKxRgjaBA1pfgAb3989+7su+8+Z//2Pvt1zl2fmTPn3H3O/p3f/a6z92/t9Vu/tTs6OzsxDMMwDMMwavQruwNtyiBgLvASsAg4rtTetB+mb/6YxuVh2lcHs0X5lGaDDosg5cIOwLbImNsCC4EhwDtldqqNMH3zxzQuD9O+Opgtyqc0G1gEKTvOA/7svV6JjAnwFrAW2KaMTrURpm/+mMblYdpXB7NF+VTCBuYgZcdQoCti+whgE+Dvhfam/TB988c0Lg/TvjqYLcqnEjYwByk7ogw6ALgbGA90F92hNsP0zR/TuDxM++pgtiifStjAHKR0DAEeB94FlgD7A3vT06CbAr8GpgDPFNy/Vsf0zR/TuDxM++pgtiifytrAHKTk7A48hwy5NzAR+AWwOTWDdgAzkdFnFd7D1sb0zR/TuDxM++pgtiifStsgDwfpSRT+OiiHtrNiAPA15JEuA9YB/wbmofBdI11mAA8BF3r7Pgg8BqwC3vQ+czBwEvBlZOQuYJ8U/fwosALp+ZsU+5dBM9pCsfqCaWwaR9OsxvUoWvsozB7CbJGMdrVBXTbOuL1+wDBgA7Ws8ypyInA7yo6fA7wObIfqK/wIONr7THiecxBwJAoBBllPz3DgPLJxPjuBT3r92DeD9oogrbZQvL5gGvuYxj1pRuN6lKF9FJ2YPcwWyWlXG9Ql6y/dHeiPCjrlXaNgHDLEqBT7vgJ8EdgROA34NvBVYA+UHX880cWohhPt/O1HdMZ9M+wFXAA8DCxGP6ailpeOo3htoVh9oVyNIb3OpnH+NKNxPYrWPgqzh+jLthhH8eedKKpgg4Zk7SDt5z3/KbT9EWSQsHj+3GI3cEPGfWnE48BvgQ9D21cB3/dej4rYrxvYCCWM+RyGPP+uTHsItyF9vokOHtAPKky7aAvF6gvuGkO1dDaN86cZjetRtPZRuNjjYtTXi+u0MQR4D6VTFEXW9mgVWwA8jfpb7/FE7j0V7WKDkcD9wJloqu4p4G3gBUKpQUU5SJciUa9DgvhM9Tp5B0rOqgIfeM/rI95biE4MU4FdgTFo2SFka9BTgdHA91CxrCXe9qgQbLtoC8XpC8k0htbR2TTOnziN61Gk9lG42mOe93xgnXa+i+xzXtYdTEkae7SKLUA5P5MjHq9778/JtadutIoNrkW3LfGjVPchh/9XKD3o96hyN1Ccg7QIZZ/vCYz1tl2OPOefA2dl3I+0bAyc4b1+OOL9N1Ay2tHof7wUuAtNJ76aUR/6AzcDa9D8NNSuLqIOnnbRForRF5JrDK2hs2mcPy4a16Mo7aNIYo/nUQLuARHtnAh8FiXXLo54v2jS2qNVbAFyIDpDjy2AnVBk9Zp8uulMq9hgLHAlsBTVWdoRGAzc6r13H7LN6f4OWSZpd6Dw4HqiD5wrUSZ6J8rcvx55a2PpHbIrixvQUsOHUN+iuMd7BJmUYR8mAwPR1dlab5t/dVFvaqJdtIX89YV0GkP1dTaN88dV43oUoX0USezxAbAATUUMRAMZaFC+Bd3uoYg+u9CMPVrBFmE6kHN6tvd8PuUXrmwFG2yMaii9D5wCrEbTeVCLmD4AfAnYxd8pHEFaTuO5zvDjJ4F9hyDv60VU8CnMCmAasDMK0T6Dcg3ed/jnovr1Y++9ORHvzXRoM8wFaM79L9SuXovmU+gHv5TanC7oBLUG2A3YMmI/09adtBpDtXU2jZs7f7lQJY2TkMYeT3vPwWm2Seiq+zK0vLsRy8nXFtCa9mjm2NgInRfOBm5CDlacc7ScvnPeacThaLXg75CPAprx6qY2nedfgK3zdwpHkF4j2rmpxxuB1/Wm14L8I/B6PO4r3aYBHwttG4a8vbvQjyBIl2O7PucC09HquyOAfybcPytmIJtchLL7gyxBCXDDiE6ONG3daEZjqKbOprFo5vwVR9U0TkIae/gO0gEoP2MPb//56PcaR562gNa1R9pjYxPgXuAEFF2d7Ph90+g7551GHOo9PxjYNhxN5f3H+9vPPfr/9F7YQTqiiQ7EOUinoLnUVcD2qDDU2Y5tT4vYNg4ZeSZKukrLBDQH+SL6/99qoq1mOJ1ayO+RBp/bl94Hj2nrRjMaQzV1noBp7NPM+asRE6iWxklIa49n0NW1H0G6DUUwzsVtSicvW0Dr2iOtLTYDZqMk5kuA7yT4zmkR28bRfuedOHb1nld5z4OBj9MzZ2qU9zzX35BlDlIjB+kLyFtdikJdT6KKnNNRaK4sLkPzp10o8XB1xGfynt/tQCHVm9Hc/6w637kL+iGG56hNWze2Ir3GUE2dXTSG4nQ2jatDs+eVtWh11Qi04uoIVCTwhXy660wr2qMZW2yBlqSPBs5BNiibVrNBR+D1R7xn31953nveA51zngJe9j+clYPkJ2i/Ty3ZzOcQ5P2uAD6HwudXofut3IDKh5fBVSj7f6HXr3rhwY46210ZhA6IbdHBMRmFrINcg66Wb0I/vihGoMTJ4CqHvq6tj4vG00inMVRTZ1eNIRudTeP8Nc6atOcVn3momOEP0CB4ZQ59TEIr2yONLbZCic8HoKjP3dG7FUqr2mARik6fBPyMmsbPI8d0NlpgNiG4U0dnZ2cWXz4EXeEtREb2GYqKWK1DJ8DXAu8t8D47EnltSRmHks1GkzxMeCYKL25AiaBRCYfLSZeQHGYHNKgs8p4XIr38vIp9kJFWouXNb9dpZzPgv97r/qhqeV/X1icvjddRzd+waZw/WWp8Hpqa2rOJ/iRtoxl7+JxBLd/o6+h2EmVRJXsUZYvZKKr6HEoujmIKqiWUhHGUf94p+pjYBk0Hbgf8AV3wDUEXYEehHK/TCF30ZRVB8u+lMj+wbTe05K8b+Dw9T3qgMuWPorBjvYJkeTHYe96IkMcY4AniDe1ioJXeAzRPuxYZyy/y5SftXUj9AweU8PgqCgV+GtVs6Ova+uSl8Rqq+RvOSmNw19k07o2rxkNpvvBd0jbS2uPZwHt/854XAHcm+O48qJI9irLFSG/7/vS+XxnoOOxM0I9mqZINotqYis5jYyI+uxrlGN2CdN3C2z4aJW5fi5LNe5BVBOleFL4ag0KCfYU7UK2WU7y/GxkIdCU8C4WtqzI/W1XC2rpiGicjjc6mcTKeA34J3FhyG0m5H53LDkROUrvQrJZl2KLdyOOYeAJFxK6O2W8w8Ffgpyi/ri5ZVNIejpYeLiNd4bRWJuzBfob6q/gGoDnk8dig4kKaKwzTODlJdTaNGzME3bPqXZSPuT8qotflvb8CVQYPMgxNk+zl2MaJ3ud3DrQxHUUfPpHR/3EqcCxKCm5l56iRlhOJrsl0teP+UIwtWp0sNGzUxiYo/3kkqtXVTe9c6CB+EnzsgoO0DlI/FNqbhZaDbkB39Q3XdWgnmjHQpuh+OlOQXkZPshhUTON44nSOGzBM48bsjq5qlyBdJ6Ich82paTwfXUgFuRVF8l5ybGO2976fNH0JcDLKpQjWkErKTt733YFyVJYC32qivbKJ03IGyq3zH9PRMvB7HPeH/GzRLmShYVwbG1DuIiihfQdq05NRODtIaXOQ9kKOwGpUnvs6lLzZrvgGmgl8g1pyV9hAzyIDvU4tca7D2+9x5FAaPYnTFuIHFdM4HhedZ9Azf2AiWvVxD6axCzNQisGF3t/LgMfQvabe9LbNR8u1fY5HUbwTErTRje5R9yDK2bocLVEO528l5Sjk/P4L5ThOwL1IZxVx0dIvEng58BWUp7Iswf552aJdyEJDlzYGIlsuID6y7TtIXXGdT+sgvUj2N7qtMs0Y6GA0yCymtlR5LI1DgH2JLAYV0zge18Gi3oBxCKZxIwYBR9I7mXY9PU/Ef0SF/rZGCbs3oWXTaxK0ASo0uABdnB5D4zsYuPJD79EOJNHyCnR+GQW8kmL/PGzRDmShoWsbw1GQxmXa/xiHzwDZFopsV5o10Dz6ljOZhCwGFTCN40hyooLoAcM0bsxwFEkOR9L3o2fV5IVoOn4EqsXyAXJek7QBusIeimxS9SrGZeCq5VUoonoYtchRkv3BbFGPLDR0bWMYORQxtRNePI0M1BX4exjlV5ltNVy1DQ4qF9FzUDHicdUZNGCchQaMVzBc6UbLnzcNbDsMOUFdgW3vofPEsShKdwn6PSdpYyiq13IOWml2fTb/QlvhouUkVN9pFD2dI9f9wWzRiCw0dG1jHxTdzhRzkOIp1UBtThaDihGPq86NBgyjMQvR73Qquu/TGGqVj7tCn52Pak/NRzmcSdrYGU2V3oyKOE5C9aMOxQgSp+UV6E70J6Oo9PbeYzPH/cFsEUcWGroeV/1Q7aiB9L45b2rMQYqnVAO1OVkMKkY8LjrHDRhGY95ApQ+ORvkTl6IT/jsE7g7u0QV8SO+VmXFtbI1urvkAtavsxWgV0JQs/5k2oJGWy9DqvAHA09SKoK4EDnLY32zhRhYauh5XVwDHoRXPmUXxsioU2e6chgzWH01TPAlc7P39YeAzNyIH6XY0mBvxuGgLKnN/JwrHLi24j+1AI5270cqlLSP2OxyYU0wX+wyPoulLO0cYRoUxB8loFWxQMVqZfqjo3XjgfFQqZW2pPTIMoyG2is2oMsFBZW+07NwwWpGRqIbUy6hMhTlHhlFxzEEyqowNKka7MBfL+TSMlsIcJKPKzMUGFcMwDKMEbPAxDMMwDMMIYQ6SYRiGYRhGCHOQDMMwDMMwQpiDZBiGYRiGEcIcJMMwDMMwjBD/Ax10d6205P4xAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Jx + 2 \\frac{d^{2}}{d t^{2}} Ax + 2 \\frac{d^{2}}{d y^{2}} Ax + 2 \\frac{d^{2}}{d z^{2}} Ax - 2 \\frac{d^{2}}{d yd x} Ay - 2 \\frac{d^{2}}{d zd x} Az + 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx + 2⋅───(Ax) + 2⋅───(Ax) + 2⋅───(Ax) - 2⋅─────(Ay) - 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOOElEQVR4nO2de/AVZRnHPz/UUSPUwrwlKmMDaiqghJcUwUtJaDle8ooykuUFFROTUPGHl8ELKUySll1I0ialTBMzTUFEGCX0h6ilYjHGACpFTXkHf/3x3e3sOew5Z++7Z8/zmTmz5+zZd/c93+fsvs++7/M+29HZ2YlhGIZhGIZRoUfeFSgpfYB5wMvAUuD4XGtTPkzf9DGN88O0Lw5mi/zJzQYd1oOUCjsC2yFjbgcsAfoD7+ZZqRJh+qaPaZwfpn1xMFvkT242sB6k5BgL/Nl5vxoZE+AtYB2wbR6VKhGmb/qYxvlh2hcHs0X+FMIG5iAlxwCgy2f9YGAz4O+Z1qZ8mL7pYxrnh2lfHMwW+VMIG5iDlBx+Bu0N3AWMAbqzrlDJMH3TxzTOD9O+OJgt8qcQNjAHKRr9gSeA94FlwBBgb6oNujlwPzAFWJhx/Vod0zd9TOP8MO2Lg9kifwprA3OQwtMPeBYZcm9gAnAfsCUVg3YAM5HRZ2Vew9bG9E0f0zg/TPviYLbIn0LbIA0HaT7q/joohX0nRW/gG8gjXQ68B/wbWIC67xrpMgN4GLjYKTsHeBxYA7zpbPNF4GTgOGTkLmCfCPX8JLAS6fnbCOXzII62kK2+YBqbxv7E1bgeWWvvh9lDmC3CUVYb1GXThPfXAxgIbKASdV5ETgJuR9Hxc4E3gO1RfoUfAyOcbWrHOfsAR6IuQC/rqe4OXEAyzmcn8FmnHvslsL8siKotZK8vmMYupnE1cTSuRx7a+9GJ2cNsEZ6y2qAuSR+0H9ALJXQqcp6IV4GvAjsDpwPfBc4G9kDR8Sfgn4xqEP7O3/74R9zHYS/gIuAR4AX0Z8pqeulo9CcfFqFsVG0hW30hX43jYBqnTxyN65G19n6043XFj3a3RRTKaIOGJO0g7e8s/+RZdyk6KS6tU6Y/8AEamsuKJ4DfAR/XrF8D3OG8H+ZTrhvYBAWMuRyGPP+uRGsIt6Gx12+jkwf0h/JSJm0hW30hmMZQPJ1N4/SJo3E9stbej6D2eBTVt7bBc+NBuoEb0qmiL0nbo5Vs8TSqb73Xk6nXVJTFBkOBB4Gz0FDdU8A7wPPUhAZl4SAtcJYH1inzfSTS2ITrEpWPnOV6n++WoIv0VGB3YCSadgjJGvQ0YDjwA5Qsa5mzvrYLtkzaQnb6QnCNobV0No3Tp5nG9chSez/C2OMy1BBeh3R3mYoaljtRQG0RiGKPVrLF/cBkn9cbzvdzU61pMFrFBteix5a4vVQPoJuv36DwoD+gzN1ANg7ScyiY6wCf7U8CjkKBWi/4fJ81mwJnOu8f8fl+FQpGG4F+42XAz9Fw4msJ1aEXcDPwDzQ+DRVtak+eMmkL2egL4TSG1tHZNE6fIBrXIyvt/Qhrj6VoxtCewChn3UTU23EvcG5aFQ1JVHu0ki2mOtt5Xz2BXVBv3jXpVDMwrWKDUcCVwEsoz9LOQF/gVue7B5BtznALJOkgdaDuwfVUX8Q+Ahaj8dWdPOt7Areg1OGTEqxHHG5AUw0fRp6kH3ejP+anUHfiJPRbarsdozIZ6XQ1SqkOlbuL2u7XsmkL6esL4TSG1tHZNE6foBrXIwvt/QhrD1Bj8j5qkMcC16PfPIr06xuUOPZoJVu4dKBep/HohuFs8rdFK9hgU5RD6UPgVGAtGs6DSu/1Q85yN7dQrYO0gsZjnbWvX3jK9kfe14vopPLytLP0dp9PQh7c5WiqYCPi1CsoF6H4h79QuWPKms8DFyIP9w7P+lXobuNzwFY1ZdLQ9mfOd3N9vpsZ8Ld4KYK2LlE0huL/h03j9tI4DFHtsRKYBuyKhjgXopikDwMccwXtdV0JSlRbgIY6ZwLnATchp7XZjLEV2DkBcDiaLfh75KOARry6qQznuU7Ze26h2mn+r7Oxc9OIVZ73fsNrLu6F7wA01rcHcAmwCHWpNSNOvYJwATAdzb47AvhnyPJJMQPZ5BIU3e9lGfKwB1IdqBpX22nANjXrBgJfc8qvqPmuK8A+vRRFW5coGkOx/8OmsWgnjcMQ1R4Ab3vejyH47ORptNd1JShRbbEZcA9wIurRmxzweHZOiEOd5RzPukFoKO8/zmc39uj/w3u1DtIRMSrQyEFaiDw1987wNuQNX0CwnAlx6tWMcWgM8kXnOG+leKxGnEGly+/RBtvtR/XJE1fbaT7rRqML2UwU0BaVcRRDW5eoGkNx/8PjMI1d2kXjMMSxx6ko/mUNsANK5ndewONO81k3mnJeV4IS1RZbALNREPN44HshjmnnhNjdWa5xln3RsJ43ZmqYs5znrkgyUWQjB2kditQfjKL3j0AJp55P8PhRuByNn3ahINC1PtsEuTDHoQN1qd6M4jBm1Tnmbki32jFq0zYYWxNdYyimzkE0hux0No2LQ9zryldQT89LaHhiPsqiPB0Np+RFK9ojji16oinpw4Hz0fmQN61mgw7P+084S9dfec5Z7oH+508Br7gbJ+UguQHaH1IJNqtlAUqM9UMk6JUJHTsqV6Ho/yXAl6jfPdhRZ31Q+qATYjt0ckxGwwderkF3aDehP58fg1EQa70p0u2orUsQjacRT2Mols5BNYZkdDaN09c4aaJeVw5BPRYr0e9+G2lxH2oYj0unuk1pZXtEscXWKPD5ANT7dpd/sUxpVRssRT2iJwO/oqLxc8gxnY0mmI3zFuro7OxM4uD90V3FEmRkP86kEkdwDkpNnhdnoW7eDSj40C/4cwXRAgdr2RE1Kkud5RKklzuWvw8y0mo0pfadOvvZAviv874XnkAyktd2NAqoHE74rvAstXXJQmMozn/YNE6fJDUei4YJ94xRn7D7iGqPfijx4HvIUXrds+1idH0fiu60wzKaYlxX4tojK1vMRj15z6LgYj+moFxCWVAkG4Tdx7ZoOHB74I/ohq8/cvqPRjFep1Nz05dUD5L7LJVFDbb5m7NcDPwkoeNGpa+z3IQaj9HDkzQ3dBADrXZeoHHadchYbpIvN2jvYuqfOKBAu9dQV+C+wDOe79pVW5csNIbi6JyUxhBcZ9N4Y4JqPID4ie/C7iOqPR5AQyNfpto5Aj1a4jE0VFQvoWdaFMkeWdliqLN+CBs/rwx0HnaGqEdcimQDv31MRdexkT7brkUxRrcgXXs664ejwO1rUbB5FUn1IN2Duq9Goi5BPx50vj8QXfzKwJ3oacynOp8bGQh09zULDSEkOT7bDtoGJS2NwXR2MY3D8Szwa+DGnPdhiLhami3ik8Y58STqmby6Sbm+wF+BX6JYx7okkShyEJp6uJz6SaJOA45FAWZluejBxh7sF/APUgfojcaQx5Bso9Iu2gYhLY3BdHYxjRvTHz2z6n0UjzkEJdHrcr5fibJRexmIhkn2CriPk5ztd/XsYzrqffhMQr+jLDTScgL+uYCuDlgegtmz3Un7nNgMxT8PRXnTuqkfCw2VIPimkz+iOkg9UNfeLDQ1dwPK6OnN67AL+gPeicadXwK+E/F4RSCOgTZHz9OZgvSKSztpC8EahKQ1hvbTuVmDYRo3ph+6q12GdJ2AYhy2pKLxInQj5eVW9PtfDriP2c73bgD7eOAUFEvhzVvU7jTTcgaKrXNf09E08LsDlofm9mx3sjgnNqB4OVBA+45Uhif9COwgRY1B2gs5AmtReu7rUPCml6PRhfRfaFx7HMGTjBUN10AzgW9SCe6qNdAzyEBvUAmc63DKPYEcyiRoJ21BDcLlqEE4h0qDcDBqENLQGNpP5xlUxw9MQLM+7sY0DsIMFGJwsfN5OfA4etbUm866RWi6tssJqBfvxBD76EbPRZuD4oQmoinKtTFD7U4QLd0kgROBr6M4leUhyjezZ7uT1TmxE7LlYpr3bLsOUlezyicVg1R2HkPOoDdO46fIQG72zePQ0MPWVBvoEJRDxPt8ulE07gJsJ4JoC5pSOgdNM3UbBHc40zRuTlCdXSaiAO7hKC+IadyYPujGaAjVw4M/cr4b4Xw+GGUM740Cdl9GM4KmhdiHy0Jn22MI/+DcshNGyytQAz0ceDVk+Ub2bHeyPCcmozbhUBIkyUSRZaUPcCQbzyJYT7UHOgj1otV6rwtI9qHAZSKotqDMs4tRb+UxVMd6mcaNCaMzVBqMYVQaDNO4MYNQT3JtT/r+VGdNXoKG4wejXCwfoTvkMPsANQYDkE2KnsU4D4JqeRXqUT2MSs9RmPKN7NnuZHlODCSFhLJ2wWtOIwN1eT4PJP/s1a1GUG3BGoQ4hNH5KuBc1GC8ihGUbjT9eXPPusPQBb/Ls+4DdJ04FvXSjUcNQph9DED5Ws5Hs/6uT+YnlIogWk5CQ/bDqHaOgpaHxvZsd7I8J/ahunc7EcxBak6uBio51iBkQ1CdGzUYRmOWoAv9VPTcp5FUMh931Wy7COWeWoRiOMPsY1cUj3EzSqg5CeUsSnRooQQ00/IK9CT6U9Cwzg7Oa4uA5b3Us2e7k9U5AfJl9kWxSNskU31zkIKQq4FKjjUI2RBE52YNhtGYVSj1wQg0/HsZ+r++i+fp4A5dwMdsPLW52T4+jWKNHqJyk/ACmsQwJckfUwIaabkczZTsjWJfVnteBwUoH9Se7U4W54TLFcDxKGVAYjfQFqQdjNPRBagXGqaYD1zqfP7Ys82NyEG6HXnDRnMaabsNuoDNB77lKXMv0vkQjKA00rkbzSLbyqfc4cDcbKrYNjyGhi/tGlEOzJ7xKaSG5iAZhmGkTw+Us2sMcCFKlbIu1xoZcTB7xqfwGtosNsMwjPQZinJIvYLyvBSqITBCY/aMT+E1NAfJMAwjfeZhMZ9lYh5mz7jMo+AaFrpyhmEYhmEYeWAOkmEYhmEYRg3mIBmGYRiGYdRgDpJhGIZhGEYN/wM+zXTODA74lwAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jy - 2 \\frac{d^{2}}{d t^{2}} Ay + 2 \\frac{d^{2}}{d x^{2}} Ay - 2 \\frac{d^{2}}{d z^{2}} Ay - 2 \\frac{d^{2}}{d yd x} Ax + 2 \\frac{d^{2}}{d zd y} Az - 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy - 2⋅───(Ay) + 2⋅───(Ay) - 2⋅───(Ay) - 2⋅─────(Ax) + 2⋅─────(Az) - 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAONklEQVR4nO2de7QVVR3HPxd1qSllaSoUJquWKGmAko80hLDU0HL5yHwgFFmZqJjPfF4fLXyQXkqyMleYaSs1LQsySUVESeniBaTyVSxjiSZErfIJePvjO+OZO3fmzOPM65zz+6x115w7Z/Y5+3x/e/b8Zu/f/k1HZ2cnhmEYhmEY7cqAsivQggwB5gN/BpYCR5Zam9bCtM0X07dYTO/qYLaoBqXZocNGhjJnELA9MuT2QDcwDHitzEq1CKZtvpi+xWJ6VwezRTUozQ42MpQNU4G/OK9XI0MC/BNYB2xXRqVaBNM2X0zf4nE1N73Lxdp+NaiEHcwZyoYRQE/A/tHAZsA/Cq1Na2Ha5ovpWzxBmpvexWNtvxpUwg7mDGVDkDG3BX4KTAF6i65QC2Ha5ovpWzx+zU3vcrC2Xw0qYQdzhpIzDHgQeANYDuwN7E5fY24O3ANMBx4ruH7NjGmbL6Zv8URpbnoXg7X9alBZO5gzlIxdgCeQEXcHzgfuBLakZswOYDYy+K2F17B5MW3zxfQtnijNTe9isLZfDSpthzycoQVoWGu/HD67UbYFvoK8zueA14H/AAvRcFyUHrOAucAZTvk5wAPAS8DLzjH7A8cCRyAD9wB7JKzn1sAqpOOvEpYtg0Z1heK0dWkmjU3f/MlCYz9RmmepdxDNZgOXrG1RdNsPohlt0Yp2CGXTjD9vADAS2EgtIrxKHAPciCLWHwJeAHZAuQx+DBzqHBM0RzkEOAgN63nZQN8hvoU07mR2Ah9w6rFng59VBI3oCsVq69JJ82hs+uZPoxr7iaN5lnoH0Ulz2cAlS1uU0faD6KT5bNGKdggl6y/dBRiIEiZVMT/DM8DngA8CJwDfAr4M7Ioi1o8iPMnTKIKdvL0IjoRPy3DgdOA+YBlqREUsLZyMGvXYFGUb0RWK09alLI3TYvrmT6Ma+ylacz9l22Ay5fUnXsq2A5Rvi7S0mh3qkrUztJez/ZNv/6PoxAj7ezjjeoTxIPAb4G3f/peAHzivx4aU7QU2QcFdLgciL78nsxrCDWje9JvoxAE1pCBaQVcoTluXuBqbvuloxzbsp2jN/SSxwf2ovv4Lmxu/0QtclX0VQ8nSFmXbAeLb4ixU37NCPmcY8CYKRSmCVrDDGOBeYBKabnsEeBV4El8oT9bTZGHO0D3AvIDjvwTshIbgyma9s90Q8n43aogzgGuQd/x9572ejOpwPDAO+C5KQrXc2b8nwfq1gq5QjLYuSTQ2fZPTrm3YT5Ga+0lqg3OAJcCVwK/RHTyo7pOAm1CwaxVIaosy7QDJbLHQ2e4b8lnfQw7F1IzrmIZmsMMVwIVomu9i1La3Bu4GTgR+jxzM1VCcMzQj4NhrUWc3G7g843okZVPgJOf1fSHHvIiCxqYDX0DDfbcgL/7ZDOowEGmyFs0vQ+0uImyOuRV0hfy1dUmqsembjHZuw36K0txPGhssRSt3JgETke4XoJGMO4Cv51PVxKSxRVl2gOS2WIKClPcJeO8Y4NPIqVoW8H6RNIMdJgIXAU8hZ3QfYChq19ORbT6PnKJrIVtnqAMN/W2gvrE6UFT5Kc72NMpPbnUVWuo3F3mLYdzm/Hm5JKM6XAYMRl7/OmefexcRNrztpZl1hXy1dWlEY9M3mnZvw36K0NxPWhtchFbxdKK752+j3zuR/tMkZZHWFmXYAZLbYj2wGE3tDEYOBMBWwHXo8RRF1DuKqtthU+TwvAUcB6xBU3JQG337LXKGdnYL+WOGVlJ//t7/9zNP2WHI23oKJVQKYhN013EKGiqbSnRn10id4nA68k7/ik78Mvgo6vhXUJuLBZ0Ma4GPAO+uUz6privpr9tPnPceCnhvdvyf8g5V0NVLIxpbu42mCm04S32hehpH0YgNVgFdwIfQdMxjKIborRjfu5L260+iSGuLR52td6rsEhTEfB5a2l6PlbRXvxPEp9DKvd8hfwQ0a9VLbUrOdfBfdwv5R4aeJ9yRCeJFz+uwKTKXzYDbgaPR3cdlMb+jkTpFcSowE61+Gw/8K0HZLJmFbHEmtfl6l+UoSG0kwYFzaXTtArbx7RuJPOVb0AnlpSfGZ3qpiq5e0mps7TYeRbfhPPWFamocRSM2AHjF83oK8VcEd9F+/UkUaW3hOkP7oNiWXZ3PWIS0jKLd+p0gPuls53j2jULTcf91/h/kbN+ZovM7Q+MbqEA9Z2gL4C5gAnA28J0En9tIneoxDbgeeY7j0RBkGZxIbQjv/jrH7Un/Eyetrl0B+yajzms2MD/m5wQxjWro6iWtxtZu41FGG85LX6imxlE0YgPQdMIMtFJoR5QY75SY390VsG8yrdufRNGILR5DIxjuyNANaNT0VOJNGbdTvxPGh53tS852KPBe+sY3jXW2890dWcYMhTlDW6GlbeOAb6AkTmVzHpr37EFBaWtCjss7XuE9KHhrPQpgDPq+nVHj888xm67RdKCh6DQam77xsDZcPo3YAOCzaNRhBZpiWIAyD89E0yFlEccWVbIDNG6LdWjV2Wi0Em08Oi+ezKGucWmmc6LD8/pdztb1TZY4211RO38EeNo9OCtnyA2efotagBioYcxFQ36T0VNoy+ZitEKlG/gM9Yf6Ouq8F8UQdDJsj06My9Cwp5cudBd2DWpwQYxGQXXe1QftrKuXOBpfTnKNTV9hbTicrDTOgi7S2QDgADQytwr95leQDneiC+ARmdc2HnFtUSU7QGO2cFmIEjX+EDkeF2VbxUQ04zmxFI10Hgv8gprOS5Ajehda6DXNW6ijs7Mziy8fhu4gupGhXeagu44nUDBTENNR/oEimISGbTeiIMGgYLSVpAvw8zMIXUSWOttupJM7D78HMs5qYDeUCCqILYD/Oa8HooCvPHSdjIIex5F8WLtIXb3kpfFdtG+79dJsbbgRstR4KprW2C1lXZKUb8QGI1BSy9eRU/S85/jFqC8fg+6gkzKZ8vuTIu0AjdnCy0nU4oNORo++KINmPSe2Q9N5OwB/QDd1w5CDfwiKUTwB341dViND7vNGFnn2DUAnkvu+/5kkoHnHzozqEIehznYTfF6hh4fJxrirnT/Q71yHjPSCs88NsDuD8JMGFAz3LBra+xi1pZfQnrp6yUtj01dYG+5LXI1H0FgiuSTl09pgLVoW3QscTF9HCPTohXloyicsCWBeZGWLIu0A6W3xuO/9vzvbxcDNCb4/a6p8TsxAfdiEgGPXoJig61A/s5Wzfxy6CbsCBYH3IauRodvRsNQENPTdDtyE8nEc5/xfzzij0XTDcKoxr1pl/LrGxTSOh+mbP08AvwSuLqm8IZrVDvei68i+yCFqBbK2xcNoxPHSiHJDgb8BP0cxWKFk8WyyUWhJ7HMkT0rWzPg91Y8TvJJuWxQPMQW7iMQhzR2EaRwf0zdbhqFnOL2B4iX3RgnpetAjLIJyu1waszwo8/CbKP+Py0w0svD+7H9O0xKlY5QtosqvQhm5vYxEthme4e84HjgcBU03qyOUpy02Q7HJY1D+pV76xin7cYPUIwPQ0zpDA9AQ9q1oKeBG9DRbfz6FViGtcTZHz16ajnQy+pLFhcA0DieLDt70DWcXdMe6HOl6PopL2BJpPAvFXbl/M9Fy39tilgfFry2nFkR7NvBFFPvgzQvUzsTRsZ4t4pRfhG54vVyPRlr7TbkkZCfnO29CcVYrgHMb/MyyyNsWG1F8G2jxxSBqU+5BxHaG0sYMDUcX/jUorfWVKMiyFXGNMxv4KrVALL9xHkfGeQFdTDqcMg8ip9HoS5SuoAvBeehCcDK1C8En0IXANA4njr5RHbzpW59ZKCzgDOf/54AHgEOBl519bpK3C9AzmcY6x8Ut3+uUnYPiei5Ay4L9MT7tTFw7hNliXozyi1D6B5ej0Cjr0RnU/xB0s/Fv9DDRacRPeFk1irDFYKf8YqJHql1nqCeq4mmdoafIZoqtGYhj3CDjHICW9i2jtjx1IvWH9NqJLC4E+2MahxFH36gO3vQNZwhwEP2DvzfQv+O9EOk8FngmRfn7Ud9yJXAY4Vn+25EkOkJ/W8Qt/0eUEPR9KDj6GrTkfG0DdXf5kfPX7BRli1Fo8CXOlP1hMY4Bsn9qfavRiHEW0j4OY1KyuhCYxsFk1cGbvuGMQqPC/hHxveibdfhiNDJ3ILURoSTlQTcAI5Atqpz5twyS6Bhki7jlu1E4xGiUt2Y9uuEwahRli5HkkITSOrr61DNOj+f/kZSbIbTZiKsr2IUgDXH19XbwZ2IdfBJ60ZLjzT37DkQXyh7n/0vQ9O5Y+jpCccuD2v7d6A76XvQ0eaNGXB3DbBG3/Juojz8cjVCfjc4Xo0ZRttgDjVZnijlD9SnVOC2MXQjyxTr4/OlG+s1Az0KaQC2Ldg+aAjgdxbi9irIS74gS7sUpD1o4MBfl+rkFXUQOpvYgSiOejvVsEae8yyKUo2sRipU1+lKULQag/EyD6f+A4NSYM1SfUo3TwtiFIF+sg8+fF1GqgUPR1O05qJ2+hu52z0UpCR6llrxyNbBfjPLPoqnL+5BN3JuAZWhRwfRcf1lzEaVjB/VtEVXeSw/wNv1XYBqiKFtcCByJVsNmdoOcVdLFVuYE1PkMRNMOC4CznP/f9hxzNXKGbkQXF6M+9XTdBp0sC4CvecrcgTQ+ACOKOO0WlHL/ZjQKt6LgOhpGMzEPBfpa/96CmDNkGO2NdfCGEc4AlNNsCnAaSiuzrtQaGblgq8kMo/3wdvC7ozwfhmH0ZwzKs/U0Sj1hjlCLYs6QYbQf1sEbRjzmY7G1bYE5Q4bRfszHOnjDMIx3sA7RMAzDMIy2xpwhwzAMwzDaGnOGDMMwDMNoa8wZMgzDMAyjrTFnyDAMwzCMtub/HKBRUDAFMKcAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jz - 2 \\frac{d^{2}}{d t^{2}} Az + 2 \\frac{d^{2}}{d x^{2}} Az - 2 \\frac{d^{2}}{d y^{2}} Az - 2 \\frac{d^{2}}{d zd x} Ax + 2 \\frac{d^{2}}{d zd y} Ay - 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz - 2⋅───(Az) + 2⋅───(Az) - 2⋅───(Az) - 2⋅─────(Ax) + 2⋅─────(Ay) - 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*1 p*1 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAOGklEQVR4nO2de7QVVR3HP1cwNUJJzDcqy5YoPgAhH4k8tAwzy1JSVJQlWSk+MDHJB158LFRQYSVlUomatlLL5TPTEvBFieDF9zPJWGCKWZkvlG5/fGfWzJ0758zMOXPOzJz5fdY6a+6dM2effb57z29+89u/vaetvb0dwzAMwzCMtFgv6wrkgH7AQuA5YDnwrUxrUxxMt2SYXulgOmaL6Z8thdG/zSIXbAVsjhpqc2ApMAB4P8tKFQDTLRmmVzqYjtli+mdLYfQva+TiFOB55+/VqKEA3gTeATbLolIFwHRLhumVDqZj9rhtYPo3n0L2/7I6F4OAjpD9w4D1gb83tTbFwXRLhumVDqZj9oS1genfHArZ/8258OgL3ABMBDqbXaGCYLolw/RKB9Mxe4JtYPo3j0L2/zI4FwOAB4EPgaeBvYDd6NpYGwC3AzOAx5pcv7xiuiXD9EoH0zF7otrA9G8cLdP/W9252Al4HDXSbsBU4FZgI7zGagPmowa9sek1zCemWzJMr3QwHbMnqg1M/8bRUv0/77NF+gLfBA4Bdge2AdYi8a9zXv+r8vkHgDXAON++XwIHo6xbgOHAQ8BTvmPGO99RROrVDEy3pLqZXrX1syBZ6vgZ4AX0O+4ADquzvGaQRRs0sh+XvQ1aqv/3rLeABjMW+CnKkF0AvA5sgeb2/hyJPpbwMad+wJdQWMnPJ3QNMT1Ca0Vw6tEMTLekupletfWzIFnr2I4MayewZwPKbwRZtEEj+3E75W2Dluv/eTd2LwFfB7YFjgF+BJwA7IwyZA+n8iIiQ4B1eNN2XIYSnnmbJyagRh5Vw2fr0QyKrVs91Kqb6VVbPwuSpY4DgdOA+9AdYT+aN71vAtmd60HK2gb1kFYbtJz21ZyL4WglsP8g7+lvwHkRn0mbB4G76B5WegO4xvl7VIXPdgI9UPKLy0jklXWkVkMxArgTOB6Fxh4G3gOeBPZN+buiqEczMN2S6mZ6dSVuPwvSTB2DXI3Gsn+AF24eEnLc/aiewYuFOw7eCVzamCqGUrY2OBPV8cwKZQwAPkLDBs0irTbIu/Yuj6K6Vnotcg+s5ChcjBqoDxJoHrAxcBFwbu2/IVU+drafVHh/Kepos4Ad0ZjYDc57HSnW4yLkhLke5h2ok/8OGAz8AW+8LGuiNAPTLYxquple3YnTz4I0S8cgRwOjgZ+ghYrcseuw0PBZ6CJyMboQuMxCDt88lISXB1qxDR5xtvtUKOfHqF1OSbuCNZKkDfKuvcvtwPSQ1+vO+wvcA8OcizOQAzETeS8/BE5yKgDybrIeTukJHOf8fV+FY1ahOcAHA08gw3A9Wib15ZTqMR5Fc55Fc5G3BfoDVznv3QH0Bo5N6fvqIY5mYLoFidLN9OpK3H4WpBk6BumN7NzbaMwZvDu3MOO6HGXo74J0BzgH2cRbgO83qJ5JadU2WAZ8AOwdUs5Y4MvAXLomO2ZF0jbIu/Yus5xj/a9ewHYoenehe2DQSdga3SEtRmNH/iSUDpRN2geNyWTJpWiqzr3ojq0SN6Ef/VkUmpqGhEiaQR1GTzTPeC3K7l2Dwljgedh3O9sdUvi+eomrGZhufuLoZnp5JOlnQRqpYxjTkc27AC2jDN6dW6Ww8HloDYJ2dId8Cfqd4xtYz6S0aht8DCxB15+tfft7AVei5bCnNaieSamlDfKsfRhtKOIxBTl1J+Cra9C5GIfXUGE/6D1nu67Cl62g+nhM8PWrGD8gyGlozO0FvLuHLDgAZdf+HnjG2TcU/a4O539Xww+qlLOC7rpc57y3IOS9+TXUNS+aQWN1a8W+Zno1hl2BU1E06Brf/lXoTu7zaCg4yEpgNrA9CsM/hnIw1sb4zhWU61yPopY2eNTZ+odGpqFo3tnAvyO+cwV2HkDt/d+lB+qfJwGXI0e7y4yY4FTUbyBDdW+FArdBDsaqCu+/irz6uFQqpxKTgDnocbMHAv9M+Pk02d/Z3uPbNwSFsN51/nfHwKuFtWajaJCfwagtrkcng5+OJJUkX5pBerqVpa+ZXo1hLrJ/Z9D9ZulpdOc4mPDkwLd8f08k/hMpZ1Oucz2KWtrAdS72RvlGOzufX4w0jMLOA1FP/18fuBk4AkXwpod9Qc/A33uhsGvYyfIFYEsUgq0Upjmwwv40mIzGmJ9xvufNBn5XHHZ0tm842/4onOUfXxvlbBdWKWd2yL4JyODMj/hsFJPJl2aQnm5l6WumV/ocize0dH+V4/aku3Edh8ad30D28HR09xaH2SH7JtC653o1am2Dx9Adshu5uBrdRU8i3noedh7U1/83BG5DCadTgCsqfdjvXOyKpsF8Cg2XBB0Id/rPtdVq3SDORmNYHShpZ03IMXE6Vlq0+f7+tLMd6myXOdudUUj7YeDFJtXLTxzNoHm6tQX+L7JuWWhWZL0gHw9XakOh3plo/P5Gwuu1A7o4BMedv4rujp9Fmj8EfAfdqb7QkBrHo0xt8A6a1TAMzXQ4EC1i9WRjqhubPNmNamxC7dr3QlPhRwMnI90r4ncuXKPVBxhD16GRScCR6G7pruj6p8r5KAN1KXAQlcNMwYtXrfRDom+OGmA6Cr8FWY7uYo4EfoOXXbsMNc5taArS5JTqlYS4moHp5qeZfa1MekF6/axeLkQRh8vRBSGMYShx0J8xPxxpvRL91rfQ778VXVQOa0x1IylTG7g8ghZ++hm6iJ/XgDomodnXqHqYTW3ab4J8gr1RtO2G7h/riv/ZInORN3IXWob0ZnQC7Q/sh6bHHISXVdoMjkfhwnUoeSosWWcFtSU+VWIrZPCXO9ulaD2B4FDRZij8tQXwR3SxGICMzRg0LnUM4ReMKCagRK/RJA+VZqEZ5EO3emi2bqaXxynoBmaXOuoTp4zdkVO22jnuvQrHbQj81/m7N3qg1CKUMDscjdu7LEHGeASKHiVlAvk41/PeBv5k5ePw8itORMtsZ0VabdAM/evR/h4UuXscJZeHMQOt1QF0j1ysBY5CnthxyLC9hjzDK0iWCJMG/Z1tDyrfmS0i3YZb7bxAY2bvIB1eDxy3Bo11X4kMSy9n/2jUEBehpJ5mk5ZmYLoFSbOvmV4eg6h/oaBgGbNQGxzi2+cmsZ1OZcMKsnMvoyGnPdA6Ip3AV+jqWICm7D+AQs2VFndqFGVqg7/43nvN2S4BflFXjesnrTZohv61ar8E2R5QXmbw+ScgG9bu3+FGLnqgzPPn8YZHWol56Klv46IODDAMha4HUn28rD/wV+DXaBywVTDdklOLZmXWC3Q39FvgshTLWIQiARfUVbPyUKQ2uBNdMPdBF75WoEj6x8Jd52Igemb8sirHFplavMK+aFxpItGJOG7iS9ZJRWljuiUnqWZl02sAeh7Dh2jK215osaEO5/2xKLS6ve8zc9Cd1OdilLE+isCOQOsfdFLcx9o3imr6rUQrjvoZjNpkYMwyGtkGRwOHomTCojoWUefAVMLX3LggZhm5OAdc58KNVhTZaLmkYbw2QGuoz0BTn6Iog9GPY3TKplu9RqJseu2E7q6eRjpNRbkjG+FpdpvzvpukNwUN1Y5BOWBRZaxDeRGg5LOt8EK6RrR+i9GyA36uQhG552KWkXYbbOd8xzyUn/IseixFEYlzDsxFmrmvOWjq800xy8jFOeDmXASntxUVV/T5wHfxEt+CxutsZLxOxDNeX0TGq835/IMoVB0H1+h3VDsox8TRLcrolE23OJrNpetY61Q06+MmyqcXSI970ZgvwCvAn9DzFP7h7OtEz+u4B+U3nIOmfb6aoIyt0TDvEvIx/S9PROm3GCX2uxyOonFHJCgD0m2DMcgB/xfKf5lM/IXL8kYc7d7FWyDvHODbKO/qlQRlZH4OuM7Fqc6r6KRhvPZDF4Cn8KaXjad6WOlrqdQ+O+LoFmV0yqZbvUZiOOXSqx+ahRZMBvuE7s7S/cgoXox+8xMJyxiCZuGYY9GVOPr9GSXvb4qS/i5H0yzfTlAGpNsG15LN+kppk+QcAD1A9GRkM15KWEbm50Bw+e8ik4bxAs2hzvqpr80krm5RRqdMuqVhJMqkF8jYrUMGz89Quq8SeAByXNej6yqHccsYTHGHjhpJHP2WovH6YWidg4+RI52kDLA2CCPJOXA+ioiOxItYJCljMBnr30rGrZroHYF9lYxXGYmrm9/onEF3o1MmkvS189GjuEfiORZlpBPNStvAt28kuoB1+PYNQmt2nIxmBVxSQxm7k4/HbueNOPp9hC5Kh6Jo2xR0ricpA6wNwoir3TQ0ZD+Kro5FkjIy17+VnIs0jFcZiatblNEpE2kYibKxFPWhWeh5KYfgrfLX4Wy3R0NNM9EiSdPQ2hL7JygDZNf2QOPOfVL+HUUmrn6L0Voti9GzpGopw9qgO3G0Oxc9VfUoFCHe0nltmKAMyIH+reRcpGG8ykjczgrVjU6ZSMNIlI1VaLrtwWgY8ix0Dr6PZmptih4vcDeew/8USsCeEbMMl3PRY9BXYjcPfuLq14GeLRWcHZakDGuD7kRp14ZmwfRFT39d7XvtG7MMl8z19y//3QocgwxRbxSyfgg9cK038t4edfZ9z/eZW5B3N5zyUk03/wPsjkcr4g1C08HKTDXNOlFm+8YhnzsAWNCcKhpGTTyAhvAmZV0Ro7i0mnNhNBYzOobRmqyH1vmZiGYODqS5z5EyWoxWmi1iNAa/0dkNTac0DKO1GIHWXHkRTTM3x8KoC3MujCjM6BhG67OQ1srBMzLGnAsjioWY0TEMwzASYBcNwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBS5f/vXuSfHPUtDwAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ - 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ - 2 \\frac{d^{2}}{d z^{2}} φ - 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay - 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ - 2⋅───(φ) + 2⋅───(φ) - 2⋅───(φ) - 2⋅─────(Ax) + 2⋅─────(Ay) - 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOG0lEQVR4nO2de7BVdRXHPxd11AwtMR8kKqMjahqg5GNUBLXS0Gp85BNlohrfYmqSD7z4GHyQwiRZmRNK2lT00NRMU1BRUkIvIJaKxRgjaBA1pfgAb3989+7se+4+Z//2Pvt19l2fmTPn3H3O/p3f/a6z92/t9Vu/tTs6OzsxDMMwDMMwavQrugMVZRAwF3gJWAQcV2hvqofpmz2mcXGY9uXBbFE8hdmgwyJImbADsC0y5rbAQmAI8E6RnaoQpm/2mMbFYdqXB7NF8RRmA4sgpcd5wJ+91yuRMQHeAtYC2xTRqQph+maPaVwcpn15MFsUTylsYA5SegwFukK2jwA2Af6ea2+qh+mbPaZxcZj25cFsUTylsIE5SOkRZtABwN3AeKA77w5VDNM3e0zj4jDty4PZonhKYQNzkJIxBHgceBdYAuwP7E1Pg24K/BqYAjyTc//aHdM3e0zj4jDty4PZonhKawNzkOKzO/AcMuTewETgF8Dm1AzaAcxERp+Vew/bG9M3e0zj4jDty4PZonhKbYMsHKQnUfjroAzaTosBwNeQR7oMWAf8G5iHwnfNdJkBPARc6O37IPAYsAp40/vMwcBJwJeRkbuAfRL086PACqTnbxLsXwStaAv56gumsWkcTqsaNyJv7cMwewizRTyqaoOGbJxye/2AYcAGalnnZeRE4HaUHT8HeB3YDtVX+BFwtPeZ+nnOQcCRKAQYZD09w4HzSMf57AQ+6fVj3xTay4Ok2kL++oJp7GMa96QVjRtRhPZhdGL2MFvEp6o2aEjaX7o70B8VdCpznYhXgC8COwKnAd8GvgrsgbLjjye8GNVwwp2//QjPuG+FvYALgIeBxejHlNfy0nHoRz4qwb5JtYV89YViNW4F0zh7WtG4EXlrH0ZfPK+E0ddtkYQq2qApaTtI+3nPf6rb/gg6MOrF8+cWu4EbUu5LMx4Hfgt8WLd9FfB97/WokP26gY1QwpjPYcjz70q1h3Ab0ueb6OAB/aDqqYq2kK++4K4xlEtn0zh7WtG4EXlrH4aLPS5Gfb24QRtDgPdQOkVepG2PdrEFwNOov40eT2TeU1EVG4wE7gfORFN1TwFvAy9QlxqUl4N0KRL1OiSIz1Svk3eg5Kwy8IH3vD7kvYXoxDAV2BUYg5YdQroGPRUYDXwPFcta4m0PC8FWRVvIT1+IpzG0j86mcfZEadyIPLUPw9Ue87znAxu0811kn/PS7mBCktijXWwByvmZHPJ43Xt/TqY9daNdbHAtum2JH6W6Dzn8v0LpQb9HlbuB/BykRSj7fE9grLftcuQ5/xw4K+V+JGVj4Azv9cMh77+BktGORv/jpcBdaDrx1ZT60B+4GViD5qehdnURdvBURVvIR1+IrzG0h86mcfa4aNyIvLQPI449nkcJuAeEtHMi8FmUXLs45P28SWqPdrEFyIHorHtsAeyEIqvXZNNNZ9rFBmOBK4GlqM7SjsBg4FbvvfuQbU73d0gzSbsDhQfXE37gXIky0TtR5v71yFsbS++QXVHcgJYaPoT6FsY93iPIpBT7MBkYiK7O1nrb/KuLRlMTVdEWstcXkmkM5dfZNM4eV40bkYf2YcSxxwfAAjQVMRANZKBB+RZ0u4c8+uxCK/ZoB1vU04Gc07O95/MpvnBlO9hgY1RD6X3gFGA1ms6DWsT0AeBLwC7+TvURpOU0n+usf/wksO8Q5H29iAo+1bMCmAbsjEK0z6Bcg/cd/rlW+uXKBWjO/S/Url7z5lPoB7+U2pwu6AS1BtgN2DJkv7S1/bH33pyQ92Y6/zc1yqCtT1KNody/YdO4b2kchyT2eNp7Dk6zTUJX3Zeh5d3NWE7fOq+40sqxsRHS6WzgJuRgRTlHy7FjAuBwtFrwd8hHAc14dVObzvMvwNb5O9VHkF4j3LlpxBuB142m14L8I/B6PO4r3VrplwvnAtPR6rsjgH/G3D8tZiCbXISy+4MsQQlwwwhPjkyq7TTgY3XbhiFP+i50gAXpcmzXpyza+rSiMZTzN2wai76kcRyS2MN3kA5A+Rl7ePvPR+eFKKbRt84rriQ9NjYB7gVOQNHVyY7fZ8eEONR7fjCwbTiayvuP97efe/T/6b16B+mIFjoQ5SCdguZSVwHbo8JQZzu23Uq/opiA5iBf9L7nrQy/qxmnUwv5PdLkc/vS++BpRdtpIdvGoRPZTJTQlpQJlENbn1Y0hnL+hidgGvv0FY3jkNQez6Craz+CdBuKYJyL25TOtJBt46jmecWVpLbYDJiNkpgvAb4T4zvtmBC7es+rvOfBwMfpmTM1ynue629IMwepmYP0BXTVsBSFup5EFTmno9BcUVyG5k+7UOLh6pDPZD2/24FCqjejuf9ZDb5zF/RDrJ+jNm3d2IrkGkM5dXbRGPLT2TQuD62eV9ai1VUj0IqrI1CRwBey6a4z7WiPVmyxBVqSPho4B9mgaNrNBh2B1x/xnn1/5XnveQ90znkKeNn/cFoOkp+g/T61ZDOfQ5D3uwL4HAqfX4Xut3IDKh9eBFeh7P+FXr8ahQc7Gmx3ZRA6ILZFB8dkFLIOcg26Wr4J/fjCGIESJ4OrHPq6tj4uGk8jmcZQTp1dNYZ0dDaNs9c4bZKeV3zmoWKGP0CD4JUZ9DEO7WyPJLbYCiU+H4Cib3eH75Yr7WqDRSg6fRLwM2oaP48c09logdmE4E4dnZ2daXz5EHSFtxAZ2WcoKmK1Dp0AXwu8t8D77EjkteXJmSjMuwElgoYlHC4nWeJgPTugQWWR97wQ6eXnVeyDjLQSLW9+u0E7mwH/9V73R1XLs9J2HEqoHE38UHie2vpkpfE6yvkbNo2zJ02Nz0NTU3u20J+4bbRiD58zqOUbfR3dTqIVxlGO80qr9sjLFrNRVPU5lFwcxhRUSygPymSDuG1sg6YDtwP+gC74hqALsKNQjtdp1F30pRVB8u+lMj+wbTe05K8b+Dw9T3qgMuWPorBjo4JkWTHYe96IOo8xwBNEG9rFQCu9B2iedi0yll/ky0/au5DGBw4o0e5VFAr8NKrZ0Ne19clK4zWU8zeclsbgrrNp3BtXjYfSeuG7uG0ktcezgff+5j0vAO6M8d1ZUCZ75GWLkd72/el9vzLQcdgZox+tUiYbhLUxFZ3HxoR8djXKMboF6bqFt300Sty+FiWb9yCtCNK9KHw1BoUE+wp3oFotp3h/NzMQ6Ep4Fgpbl2V+tqzUa+uKaRyPJDqbxvF4DvglcGPBbcTlfnQuOxA5SVWhVS2LsEXVyOKYeAJFJq+O2G8w8Ffgpyi/riFpVNIejpYeLiNZ4bR2pt6D/QyNV/ENQHPI47FBxYUkVximcXzi6mwaN2cIumfVuygfc39URK/Le38FqgweZBiaJtnLsY0Tvc/vHGhjOoo+fCKl/+NU4FiUFNzOzlEzLScSXgvoasf9IR9btDtpaNisjU1Q/vNIVKurm9650EH8JPjIBQdJHaR+KLQ3Cy0H3YDu6ltf16FKtGKgTdH9dKYgvYyepDGomMbRROkcNWCYxs3ZHV3VLkG6TkQ5DptT03g+upAKciuK5L3k2MZs730/afoS4GSUSxGsIRWXnbzvuwPlCi0FvtVCe0UTpeUMlFvnP6ajZeD3OO4P2dmiKqShYVQbG1DuIiihfQdq05NhODtISXOQ9kKOwGpUnvs6lLxZVXwDzQS+QS25q95AzyIDvU4tca7D2+9x5FAaPYnSFqIHFdM4GhedZ9Azf2AiWvVxD6axCzNQisGF3t/LgMfQvabe9LbNR8u1fY5HUbwTYrTRje5R9yDK2bocLVGuz9+Ky1HI+f0XynGcgHuRzjLioqVfJPBy4CsoT2VZjP2zskVVSENDlzYGIlsuIDqy7TtIXVGdT+ogvUj6N7otM60Y6GA0yCymtlR5LM1DgH2JNAYV0zga18Gi0YBxCKZxMwYBR9I7mXY9PU/Ef0SF/rZGCbs3oWXTa2K0ASo0uABdnB5D8zsYuPJD71EF4mh5BTq/jAJeSbB/FraoAmlo6NrGcBSkcZn2P8bhM0C6hSKrSqsGmkffcibjkMagAqZxFHFOVBA+YJjGzRmOIsn1kfT96Fk1eSGajh+BarF8gJzXOG2ArrCHIpuUvYpxEbhqeRWKqB5GLXIUZ38wWzQiDQ1d2xhGBkVM7YQXTTMDdQX+HkbxVWbbDVdtg4PKRfQcVIxoXHUGDRhnoQHjFQxXutHy500D2w5DTlBXYNt76DxxLIrSXYJ+z3HaGIrqtZyDVppdn86/UClctJyE6juNoqdz5Lo/mC2akYaGrm3sg6LbqWIOUjSFGqjipDGoGNG46txswDCasxD9Tqei+z6NoVb5uKvus/NR7an5KIczThs7o6nSm1ERx0moftShGEGitLwC3Yn+ZBSV3t57bOa4P5gtokhDQ9fjqh+qHTWQ3jdJTow5SNEUaqCKk8agYkTjonPUgGE05w1U+uBolD9xKTrhv0Pg7uAeXcCH9F6ZGdXG1ujmmg9Qu8pejFYBTUnzn6kAzbRchlbnDQCeplYEdSVwkMP+Zgs30tDQ9bi6AjgOrXhOLYqXVqHIqnMaMlh/NE3xJHCx9/eHgc/ciByk29FgbkTjoi2ozP2dKBy7NOc+VoFmOnejlUtbhux3ODAnny72GR5F05d2jjCMEmMOktEu2KBitDP9UNG78cD5qFTK2kJ7ZBhGU2wVm1FmgoPK3mjZuWG0IyNRDamXUZkKc44Mo+SYg2SUGRtUjKowF8v5NIy2whwko8zMxQYVwzAMowBs8DEMwzAMw6jDHCTDMAzDMIw6zEEyDMMwDMOowxwkwzAMwzCMOsxBMgzDMAzDqON/M8ttk+3Y1moAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jx - 2 \\frac{d^{2}}{d t^{2}} Ax + 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax - 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az - 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx - 2⋅───(Ax) + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅─────(Ay) + 2⋅─────(Az) - 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOOElEQVR4nO2de9AVZR3HPy/qqBFqYd4SlbEBNRVQwkuK4KUktBwveUUZyfKCiolJqPjiZfBCCpOkZReStEkp08RMUxARRgl9EbVULMYYQKWoKe/g2x/f3c6ew549e9895/w+M2f2fffs7nnO93t2n2ef5/f8tqOzsxPDMAzDMAyjQo+iC9Ci9AHmAS8DS4HjCy1N62H6Zo9pXBymfXkwL4qnMA86rAcpE3YEtkNmbgcsAfoD7xZZqBbC9M0e07g4TPvyYF4UT2EeWA9SeowF/uz8vRqZCfAWsA7YtohCtRCmb/aYxsVh2pcH86J4SuGBNZDSYwDQ5bN+MLAZ8PdcS9N6mL7ZYxoXh2lfHsyL4imFB9ZASg8/Q3sDdwFjgO68C9RimL7ZYxoXh2lfHsyL4imFB9ZAikd/4AngfWAZMATYm2pDNwfuB6YAC3MuX7Nj+maPaVwcpn15MC+Kp7QeWAMpOv2AZ5GRewMTgPuALakY2gHMRKbPyr2EzY3pmz2mcXGY9uXBvCieUnuQRQNpPur+OiiDY6dFb+AbqEW6HHgP+DewAHXfBekyA3gYuNjZdw7wOLAGeNPZ5ovAycBxyOQuYJ8Y5fwksBLp+dsY+xdBEm0hX33BNDaN/UmqcT3y1t4P80OYF9FoVQ/qsmnKx+sBDAQ2UIk6LyMnAbej6Pi5wBvA9ii/wo+BEc42teOcfYAjURegl/VUdwcuIJ3GZyfwWacc+6VwvDyIqy3kry+Yxi6mcTVJNK5HEdr70Yn5YV5Ep1U9qEvaH9oP6IUSOmWdo2A0MmJYjH1fBb4K7AycDnwXOBvYA0XHn4B/MqpB+Df+9sc/4j4JewEXAY8AL6AfU17TS0eTv7aQr75QrMYQX2fTOHuSaFyPvLX3w/wQ7ezFaPK/7vhRBg8CSbuBtL+z/JNn3aXIjEvr7NMf+AANzeXFE8DvgI9r1q8B7nD+HuazXzewCQoYczkMtfy7Ui0h3IbGXr+NTh7QD8pLK2kL+eoL4TSG8ulsGmdPEo3rkbf2foT141FU3toKz40H6QZuyKaIvqTtRzN58TQqb73Xk5mXVLSKB0OBB4Gz0FDdU8A7wPPUhAbl0UBa4CwPrLPP95FIY1MuS1w+cpbrfd5bgi7SU4HdgZFo2iGka+hpwHDgByhZ1jJnfW0XbCtpC/npC+E1hubS2TTOnkYa1yNP7f2I4sdlqCK8DunuMhVVLHeigNoyEMePZvLifmCyz+sN5/25mZY0HM3iwbXosSVuL9UD6ObrNyg86A8oczeQTwPpORTMdYDP9icBR6FArRd83s+bTYEznb8f8Xl/FQpGG4G+42XAz9Fw4msplaEXcDPwDzQ+DRVtak+eVtIW8tEXomkMzaOzaZw9YTSuR17a+xHVj6VoxtCewChn3UTU23EvcG5WBY1IXD+ayYupznbeV09gF9Sbd002xQxNs3gwCrgSeAnlWdoZ6Avc6rz3APLmDHeHNBtIHah7cD3VF7GPgMVofHUnz/qewC0odfikFMuRhBvQVMOHUUvSj7vRD/NTqDtxEvoutd2OcZmMdLoapVSHyt1Fbfdrq2kL2esL0TSG5tHZNM6esBrXIw/t/YjqB6gyeR9VyGOB69F3HkX25Q1LEj+ayQuXDtTrNB7dMJxN8V40gwebohxKHwKnAmvRcB5Ueq8fcpa7uTvVNpBWEDzWWfv6hWff/qj19SI6qbw87Sy93eeTUAvucjRVMAi/cv3MeW+uz3szGxzPj4tQ/MNfqNwx5c3ngQtRC/cOz/pV6G7jc8BWNfuYttGIozGUX2fTONn1Kwxl0jgKcf1YCUwDdkVDnAtRTNKHIT5zBdl6Ac3pR1wvQEOdM4HzgJtQo7XRjLEVtM91J4jD0WzB36M2CmjEq5vKcJ7bKHvP3al2mv/rbNy4CWKV52+/4TUX98J3ABrr2wO4BFiEutQaMQ3YpmbdQOBrzv4rat7rCnFMLxcA09HsuyOAf0bcPy1mIE8uQdH9XpahFvZAqgNVTdtoxNEYyq2zaSySXL8aUTaNoxDXD4C3PX+PIfzs5Cy9gOb1I64XmwH3ACeiHr3JIT9vGu1z3QniUGc5x7NuEBrK+4/zvxt79P/hvdoG0hEJChDUQFqIWmruneFtqDV8AeFyJkzzWTcamTwTBV3FZRwag3wRff+3EhwrCWdQ6fJ7NGC7/ag+eUzb8MTVGMqr8zhMY5ck168gxlEujaOQxI9TUfzLGmAHlMzvvJCfm5UX0Lx+xPViC2A2CmIeD3wvwmdO81k3mta77jRid2e5xln2RcN63pipYc5ynrsizUSRQQ2kdShSfzCK3j8CJZx6PsXPj8PlaPy0CwWBrvXZJsyFOQkdqEv1ZhSHMavOZ+6GdKsdozZtw7E18TWGcuocRmPIT2fTuDwkva58BfUwvISGJ+ajLMrT0XBKUTSjH0m86ImmpA8HzkfnQ9E0mwcdnr8/4Szd9spzznIP9Dt/CnjF3TitBpIboP0hlWCzWhagxFg/RIJemdJnx+UqFP2/BPgS9bsHO+qsD0sfdEJsh06OyWj4wMs16A7tJvTj82MwCmKtN0W6HbV1CaPxNJJpDOXSOazGkI7OpnH2GqdN3OvKIajHYiX63m8jLe5DFeNx2RS3Ic3sRxwvtkaBzwegXp+7/HfLlWb1YCnqET0Z+BUVjZ9DDdPZaILZOO9OHZ2dnWl8eH90V7EEmezHmVTiCM5BqcmTMBoFmw0nejfhWah7cQMKPvQL/lxBvIDkWnZElcpSZ7kE6eWO5e+DTFqNptS+U+c4WwD/df7uhSeQjPbV1iUPjaE8OpvG2ZOmxmPRMOGeCcoT9Rhx/eiHEg++hxpKr3u2XYyu70PRnXaelMmPvLyYjXrynkXBxX5MQbmEojCa4q87eZ8T26LhwO2BP6Ibvv6o0X80ivE6nZqbvrR6kNxnqSwK2OZvznIx8JOUPjcufZ3lJtS0GD08SWOjwxi02nmBxmnXIbPcJF9u0N7F1D9xQAGPr6GuwH2BZzzvtau2LnloDOXROS2NIbzOpvHGhNV4AMkT30U9Rlw/HkBDI1+munEEerTEY2ioqF5Cz6wokx95eTHUWT+EjZ9XBjoPOyOUIyll8sDvGFPRdWykz7ZrUYzRLUjXns764Shw+1oUbF5FWj1I96Duq5GoS9CPB533D0QXv1bgTvQ05lOd/4MMAt19zUJDCGmOz7aDtmHJSmMwnV1M42g8C/wauLHgYxgiqZbmRXKyOCeeRD1iVzfYry/wV+CXKNaxLmkkihyEph4up36SqNOAY1GAWatc9GDjFuwX8A9SB+iNxpDHkG6l0i7ahiErjcF0djGNg+mPnln1PorHHIKS6HU5769E2ai9DETDJHuFPMZJzva7eo4xHfU+fCal79EqBGk5Af+cTFeH3B/C+dnuZH1ObIbin4eivGnd1I+FhkoQfMPJH3EbSD1Q194sNDV3A8ro6c3rsAv6Ad6JxjtfAr4T8/PKQBKDNkfP05mC9EpKO2kL4SqEtDWG9tO5UYVhGgfTD93VLkO6TkAxDltS0XgRupHyciv6/i+HPMZs5303gH08cAqKpfDmLWp3Gmk5A8XWua/paBr43SH3h8Z+tjt5nBMbULwcKKB9RyrDk36EbiDFjUHaCzUE1qL03Neh4E0vR6ML6b/QuPY4wicZKxuuQTOBb1IJ7qo16Blk0BtUAuc6nP2eQA3KNGgnbUEVwuWoQjiHSoVwMKoQstAY2k/nGVTHD0xAsz7uxjQOwwwUYnCx8/9y4HH0rKk3nXWL0HRtlxNQL96JEY7RjZ6LNgfFCU1EU5RrY4banTBaukkCJwJfR3EqyyPs38jPdievc2In5OViGvdsuw2krkaFTysGqdV5DDUGvXEaP0UGudk3j0NDD1tTbdAhKIeI9/l0owjuAmwnwmgLmlI6B00zdSsEdzjTNG5MWJ1dJqIA7uEoL4hpHEwfdGM0hOrhwR85741w/j8YZQzvjQJ2X0YzgqZFOIbLQmfbY4j+4NxWJ4qWV6AKejjwasT9g/xsd/I8JyajOuFQUiTNRJGtSh/gSDaeRbCe6hboINSLVtt6XUC6DwVuJcJqC8o8uxj1Vh5DdayXaRxMFJ2hUmEMo1JhmMbBDEI9ybU96ftTnTV5CRqOH4xysXyE7pCjHANUGQxAnpQ9i3ERhNXyKtSjehiVnqMo+wf52e7keU4MJIOEsnbBa0yQQV2e/wdSfPbqZiOstmAVQhKi6HwVcC6qMF7FCEs3mv68uWfdYeiC3+VZ9wG6ThyLeunGowohyjEGoHwt56NZf9en8xVaijBaTkJD9sOobhyF3R+C/Wx38jwn9qG6dzsVrIHUmEINanGsQsiHsDoHVRhGMEvQhX4qeu7TSCqZj7tqtl2Eck8tQjGcUY6xK4rHuBkl1JyEchalOrTQAjTS8gr0JPpT0LDODs5ri5D7e6nnZ7uT1zkBasvsi2KRtkmn+NZACkOhBrU4ViHkQxidG1UYRjCrUOqDEWj49zL0e30Xz9PBHbqAj9l4anOjY3waxRo9ROUm4QU0iWFKml+mBQjScjmaKdkbxb6s9rwOCrF/WD/bnTzOCZcrgONRyoDUbqAtSDscp6MLUC80TDEfuNT5/2PPNjeiBtLtqDVsNCZI223QBWw+8C3PPvcinQ/BCEuQzt1oFtlWPvsdDszNp4htw2No+NKuEa2B+ZmcUmpoDSTDMIzs6YFydo0BLkSpUtYVWiIjCeZnckqvoc1iMwzDyJ6hKIfUKyjPS6kqAiMy5mdySq+hNZAMwzCyZx4W89lKzMP8TMo8Sq5hqQtnGIZhGIZRBNZAMgzDMAzDqMEaSIZhGIZhGDVYA8kwDMMwDKOG/wGu637ovY0gIAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay + 2 \\frac{d^{2}}{d x^{2}} Ay + 2 \\frac{d^{2}}{d z^{2}} Ay - 2 \\frac{d^{2}}{d yd x} Ax - 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) + 2⋅───(Ay) + 2⋅───(Ay) - 2⋅─────(Ax) - 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAORElEQVR4nO2de7BVVR3HPxd11JSyNBUKk6kRJQ1Q8pGGEJYaWo6PzAdyi6xMVMxnPq+PBh+kUJKVOWGmTWpaFmSSioiS0sULSOWrGGNEE6KmfALe/vju7dl3373Pfpz9Ouf8PjN3zr3nnHXOut/v2mv/9lq/tXZHV1cXhmEYhmEY7cqAsivQggwB5gN/BpYCR5Zam9bCtM0X07dYTO/qYF5Ug9J86LCRocwZBGyPjNwe6AaGAa+VWakWwbTNF9O3WEzv6mBeVIPSfLCRoWyYAvzF+X01MhLgn8A6YLsyKtUimLb5YvoWj6u56V0u1varQSV8sGAoG0YAPQHPjwY2A/5RaG1aC9M2X0zf4gnS3PQuHmv71aASPlgwlA1BZm4L/BSYDPQWXaEWwrTNF9O3ePyam97lYG2/GlTCBwuGkjMMeBB4A1gO7A3sTl8zNwfuAaYBjxVcv2bGtM0X07d4ojQ3vYvB2n41qKwPFgwlYxfgCWTi7sD5wJ3AltTM7ABmI8NvLbyGzYtpmy+mb/FEaW56F4O1/WpQaR/yCIYWoGGt/XL47EbZFvgKijqfA14H/gMsRMNxUXrMAuYCZzjl5wAPAC8BLzvv2R84FjgCGdwD7JGwnlsDq5COv0pYtgwa1RWK09almTQ2ffMnC439RGmepd5BNJsHLll7UXTbD6IZvWhFH0LZNOPPGwCMBDZSywivEscAN6KM9YeAF4Ad0F4GPwYOdd4TNEc5BDgIDet52UDfIb6FNB5kdgEfcOqxZ4OfVQSN6ArFauvSRfNobPrmT6Ma+4mjeZZ6B9FFc3ngkqUXZbT9ILpoPi9a0YdQsv7SXYCBaMOkKu7P8AzwOeCDwAnAt4AvA7uijPWjCN/kaRTBQd5eBGfCp2U4cDpwH7AMNaKqL/FsRFcoTluXsjTuRB3H2ITlTN94dJJOX2hcYz9Fa+6nGfsRlyy9KNsHaF4vWs2HumQdDO3lPP7J9/yjqJMK+3k443qE8SDwG+Bt3/MvAT9wfh8bUrYX2AQld7kciKL8nsxqCDegedNvogMH1JCCaAVdoThtXeJqbPqmox3bsJ+iNfeTxIP7UX39JzY3f6MXuCr7KoaSpRdl+wDxvTgL1feskM8ZBryJUlGKoBV8GAPcC0xC022PAK8CT+JL5cl6miwsGLoHmBfw/i8BO6EhuLJZ7zxuCHm9GzXE6cA1KDr+vvNaT0Z1OB4YB3wXbUK13Hl+T4L1awVdoRhtXZJobPomp13bsJ8iNfeT1INzgCXAlcCv0RU8qO6TgJtQsmsVSOpFmT5AMi8WOo/7hnzW91BAMSXjOqahGXy4ArgQTfNdjNr21sDdwInA71GAuRqKC4amB7z3WtTZzQYuz7geSdkUOMn5/b6Q97yIksamAV9Aw323oCj+2QzqMBBpshbNL0PtKiJsjrkVdIX8tXVJqrHpm4x2bsN+itLcTxoPlqKVO5OAiUj3C9BIxh3A1/OpamLSeFGWD5DciyUoSXmfgNeOAT6NgqplAa8XSTP4MBG4CHgKBaP7AENRu56GvPk8CoquhWyDoQ409LeB+mZ1oKzyU5zH0yh/c6ur0FK/uShaDOM258fLJRnV4TJgMIr61znPuVcRYcPbXppZV8hXW5dGNDZ9o2n3NuynCM39pPXgIrSKpwtdPX8b/b8T6T9NUhZpvSjDB0juxXpgMZraGYwCCICtgOvQ7SmKqHcUVfdhUxTwvAUcB6xBU3JQG337LQqGdnYL+XOGVlJ//t7/8zNP2WEo2noKbagUxCboquMUNFQ2hejOrpE6xeF0FJ3+FR34ZfBR1PGvoDYXCzoY1gIfAd5dp3xSXVeSr6ZQDV29NKJxVu32J85rDwW8Njv+vwK0lr6QTRvOUl+onsZRNOLBKmAG8CE0HfMYyiF6K8b3rqT9+pMo0nrxqPPonSq7BCUxn4eWttdjJa1/voziU2jl3u9QPAKateqlNiXnBvivu4X8I0PPEx7IBPGi5/ewKTKXzYDbgaPR1cdlMb+jkTpFcSowE61+Gw/8K0HZLJmFvDiT2ny9y3KUpDaS4MS5NLrmqSlUR1cvaTVO225nANv4nhuJrkZuQZ2Wl56YnwutpS+k03gG+ekL1dQ4ikY8AHjF8/tk4q8Ibsf+JIq0XrjB0D4ot2VX5zMWoXYdRTucL6P4pPM4x/PcKDQd91/n70HO4ztTdP5gaHwDFagXDG0B3AVMAM4GvpPgcxupUz2mAtejyHE8GoIsgxOpDeHdX+d9e9L/wEmra16aQnV09ZJW40ba7YyA5zrRyXo2MD/BZ3mZSuvoC+k1nhHwXCeN6wvV1DiKRjwATSdMRyuFdkQb450S87vbrT+JohEvHkMjGO7I0A1o1PRU4k0Zt/r5Mg4fdh5fch6HAu+lb37TWOdxvvtEljlDYcHQVmhp2zjgG2gTp7I5D8179qCktDUh78s7X+E9KHlrPUpgDPq+nVHj888xm67RdKCh6DQam77xsDZcPo14APBZNOqwAk0xLEA7D89E0yFlEceLKvkAjXuxDq06G41Woo1Hx8WTOdQ1Ls10THR4fn+X8+jGJkucx11RO38EeNp9c1bBkJs8/Ra1BDFQw5iLhvw60V1oy+ZitEKlG/gM9Yf6Ouq8FsUQdDBsjw6My9Cwp5cZ6CrsGtTgghiNkuq8qw/aWVcvcTS+nOQam77C2nA4WWmcBTNI5wHAAWhkbhX6n19BOtyJToBHZF7beMT1oko+QGNeuCxEGzX+EAUeF2VbxUQ04zGxFI10Hgv8gprOS1Agehda6DXVW6ijq6sriy8fhq4gupHRLnPQVccTKJkpiGlo/4EimISG0DeiJMGgZLSVpEu29DMInUSWOo/dSCd3Hn4PZM5qYDe0EVQQWwD/c34fiBK+2llXL3lpfBf56NuJknzHkWwap9X0zasNd5JOX8hW4yloWmO3hHVIU74RD0agTS1fR0HR8573L0Z9+Rh0BV0kWXlRpA/QmBdeTqKWH3QyuvVFGTTrMbEdms7bAfgDuqgbhgL8Q1CO4gn4LuyyGhly7zeyyPPcAHQgua/770kCmnfsyqgOcRjqPG6CLyr08DDZmLva+QH9n+uQSS84z7kJdmcQftCAkuGeRUN7H6O29BLaU1cveWls+gprw32Jq/EIGttILkn5tB6sRcuie4GD6RsIgW69MA9N+YRtApgXWXlRpA+Q3ovHfa//3XlcDNyc4PuzpsrHxHTUh00IeO8alBN0HepntnKeH4cuwq5ASeB9yGpk6HY0LDUBDX23Azeh/TiOc/6uZ85oNN0wnGrMq1YZv65xMY3jYfrmzxPAL4GrSypviGb14V50HtkXBUStQNZePIxGfy+NKDcU+Bvwc5SDFUoW9yYbhZbEPkfyTcmaGX+k+nGCV9Jti/IhJmMnkTikuYIwjeNj+mbLMHQPpzdQvuTeaEO6HnQLi6C9XS6NWR608/CbaP8fl5loZOH92f87TUuUjlFeRJVfhXbk9jISeTM8w//jeOBwlDTdrIFQnl5shnKTx6D9l3rpm6fsx01Sj0xATxsMDUBD2LeipYAb0d1s/fsptAppzdkc3XtpGtLJ6EsWJwLTOJwsOnjTN5xd0BXrcqTr+SgvYUuk8SyUd+X+zETLfW+LWR6Uv7acWhLt2cAXUe6Dd1+gdiaOjvW8iFN+Ebrg9XI9GmntN+WSkJ2c77wJ5bytAM5t8DPLIm8vNqL8NtDii0HUptyDiB0Mpc0ZGo5O/GvQttZXoiTLVsQ1ZzbwVWqJWH5zHkfmvIBOJh1OmQdR0Gj0JUpX0IngPHQiOJnaieAT6ERgGocTR9+oDt70rc8slBZwhvP3c8ADwKHAy85z7iZvF6B7Mo113he3fK9Tdg7K67kALQv25/i0M3F9CPNiXozyi9D2Dy5HoVHWozOo/yHoYuPf6GaiU4m/4WXVKMKLwU75xUSPVLvBUE9UxdMGQ0+RzRRbMxDH3CBzDkBL+5ZRW546kfpDeu1EFieC/TGNw4ijb1QHb/qGMwQ4iP7J3xvo3/FeiHQeCzyTovz9qG+5EjiM8F3+25EkOkJ/L+KW/yPaEPR9KDn6GrTkfG0DdXf5kfPT7BTlxSg0+BJnyv6wGO8Bsr9rfavRiDkLaZ+AMSlZnQhM42Cy6uBN33BGoVFh/4j4XvTddfhiNDJ3ILURoSTlQRcAI5AXVd75twyS6BjkRdzy3SgdYjTat2Y9uuAwahTlxUhy2ITSOrr61DOnx/P3SMrdIbTZiKsr2IkgDXH19XbwZ2IdfBJ60ZLjzT3PHYhOlD3O35eg6d2x9A2E4pYHtf270RX0vehu8kaNuDqGeRG3/Juojz8cjVCfjY4Xo0ZRXuyBRqszxYKh+pRqTgtjJ4J8sQ4+f7qRftPRvZAmUNtFuwdNAZyOctxeRbsS74g23ItTHrRwYC7a6+cWdBI5mNqNKI14OtbzIk55l0Voj65FKFfW6EtRXgxA+zMNpv/NmlNjwVB9SjWnhbETQb5YB58/L6KtBg5FU7fnoHb6GrraPRdtSfAotc0rVwP7xSj/LJq6vA954l4ELEOLCqbl+p81F1E6dlDfi6jyXnqAt+m/AtMQRXlxIXAkWg2b2QVyVpsutjInoM5nIJp2WACc5fz9tuc9V6Ng6EZ0cjHqU0/XbdDBsgD4mqfMHUjjAzCiiNNuQVvu34xG4VYUXEfDaCbmoURf699bEAuGDKO9sQ7eMMIZgPY0mwychraVWVdqjYxcsNVkhtF+eDv43dE+H4Zh9GcM2mfrabT1hAVCLYoFQ4bRflgHbxjxmI/l1rYFFgwZRvsxH+vgDcMw3sE6RMMwDMMw2hoLhgzDMAzDaGssGDIMwzAMo62xYMgwDMMwjLbGgiHDMAzDMNqa/wPmqFFQNfVv0AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jz - 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az + 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax - 2 \\frac{d^{2}}{d zd y} Ay - 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz - 2⋅───(Az) - 2⋅───(Az) + 2⋅───(Az) + 2⋅─────(Ax) - 2⋅─────(Ay) - 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: True): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhcAAAApCAYAAACGNgu8AAAOGklEQVR4nO2de7QVVR3HP1cwNUJJzDcqy5YoPgAhH4k8tAwzy1JSVJQlWSk+MDHJB158LFRQYSVlUomatlLL5TPTEvBFieDF9zPJWGCKWZkvlG5/fGfWzJ0758zMOXPOzJz5fdY6a+6dM2effb57z29+89u/vaetvb0dwzAMwzCMtFgv6wrkgH7AQuA5YDnwrUxrUxxMt2SYXulgOmaL6Z8thdG/zSIXbAVsjhpqc2ApMAB4P8tKFQDTLRmmVzqYjtli+mdLYfQva+TiFOB55+/VqKEA3gTeATbLolIFwHRLhumVDqZj9rhtYPo3n0L2/7I6F4OAjpD9w4D1gb83tTbFwXRLhumVDqZj9oS1genfHArZ/8258OgL3ABMBDqbXaGCYLolw/RKB9Mxe4JtYPo3j0L2/zI4FwOAB4EPgaeBvYDd6NpYGwC3AzOAx5pcv7xiuiXD9EoH0zF7otrA9G8cLdP/W9252Al4HDXSbsBU4FZgI7zGagPmowa9sek1zCemWzJMr3QwHbMnqg1M/8bRUv0/77NF+gLfBA4Bdge2AdYi8a9zXv+r8vkHgDXAON++XwIHo6xbgOHAQ8BTvmPGO99RROrVDEy3pLqZXrX1syBZ6vgZ4AX0O+4ADquzvGaQRRs0sh+XvQ1aqv/3rLeABjMW+CnKkF0AvA5sgeb2/hyJPpbwMad+wJdQWMnPJ3QNMT1Ca0Vw6tEMTLekupletfWzIFnr2I4MayewZwPKbwRZtEEj+3E75W2Dluv/eTd2LwFfB7YFjgF+BJwA7IwyZA+n8iIiQ4B1eNN2XIYSnnmbJyagRh5Vw2fr0QyKrVs91Kqb6VVbPwuSpY4DgdOA+9AdYT+aN71vAtmd60HK2gb1kFYbtJz21ZyL4WglsP8g7+lvwHkRn0mbB4G76B5WegO4xvl7VIXPdgI9UPKLy0jklXWkVkMxArgTOB6Fxh4G3gOeBPZN+buiqEczMN2S6mZ6dSVuPwvSTB2DXI3Gsn+AF24eEnLc/aiewYuFOw7eCVzamCqGUrY2OBPV8cwKZQwAPkLDBs0irTbIu/Yuj6K6Vnotcg+s5ChcjBqoDxJoHrAxcBFwbu2/IVU+drafVHh/Kepos4Ad0ZjYDc57HSnW4yLkhLke5h2ok/8OGAz8AW+8LGuiNAPTLYxquple3YnTz4I0S8cgRwOjgZ+ghYrcseuw0PBZ6CJyMboQuMxCDt88lISXB1qxDR5xtvtUKOfHqF1OSbuCNZKkDfKuvcvtwPSQ1+vO+wvcA8OcizOQAzETeS8/BE5yKgDybrIeTukJHOf8fV+FY1ahOcAHA08gw3A9Wib15ZTqMR5Fc55Fc5G3BfoDVznv3QH0Bo5N6fvqIY5mYLoFidLN9OpK3H4WpBk6BumN7NzbaMwZvDu3MOO6HGXo74J0BzgH2cRbgO83qJ5JadU2WAZ8AOwdUs5Y4MvAXLomO2ZF0jbIu/Yus5xj/a9ewHYoenehe2DQSdga3SEtRmNH/iSUDpRN2geNyWTJpWiqzr3ojq0SN6Ef/VkUmpqGhEiaQR1GTzTPeC3K7l2Dwljgedh3O9sdUvi+eomrGZhufuLoZnp5JOlnQRqpYxjTkc27AC2jDN6dW6Ww8HloDYJ2dId8Cfqd4xtYz6S0aht8DCxB15+tfft7AVei5bCnNaieSamlDfKsfRhtKOIxBTl1J+Cra9C5GIfXUGE/6D1nu67Cl62g+nhM8PWrGD8gyGlozO0FvLuHLDgAZdf+HnjG2TcU/a4O539Xww+qlLOC7rpc57y3IOS9+TXUNS+aQWN1a8W+Zno1hl2BU1E06Brf/lXoTu7zaCg4yEpgNrA9CsM/hnIw1sb4zhWU61yPopY2eNTZ+odGpqFo3tnAvyO+cwV2HkDt/d+lB+qfJwGXI0e7y4yY4FTUbyBDdW+FArdBDsaqCu+/irz6uFQqpxKTgDnocbMHAv9M+Pk02d/Z3uPbNwSFsN51/nfHwKuFtWajaJCfwagtrkcng5+OJJUkX5pBerqVpa+ZXo1hLrJ/Z9D9ZulpdOc4mPDkwLd8f08k/hMpZ1Oucz2KWtrAdS72RvlGOzufX4w0jMLOA1FP/18fuBk4AkXwpod9Qc/A33uhsGvYyfIFYEsUgq0Upjmwwv40mIzGmJ9xvufNBn5XHHZ0tm842/4onOUfXxvlbBdWKWd2yL4JyODMj/hsFJPJl2aQnm5l6WumV/ocize0dH+V4/aku3Edh8ad30D28HR09xaH2SH7JtC653o1am2Dx9Adshu5uBrdRU8i3noedh7U1/83BG5DCadTgCsqfdjvXOyKpsF8Cg2XBB0Id/rPtdVq3SDORmNYHShpZ03IMXE6Vlq0+f7+tLMd6myXOdudUUj7YeDFJtXLTxzNoHm6tQX+L7JuWWhWZL0gHw9XakOh3plo/P5Gwuu1A7o4BMedv4rujp9Fmj8EfAfdqb7QkBrHo0xt8A6a1TAMzXQ4EC1i9WRjqhubPNmNamxC7dr3QlPhRwMnI90r4ncuXKPVBxhD16GRScCR6G7pruj6p8r5KAN1KXAQlcNMwYtXrfRDom+OGmA6Cr8FWY7uYo4EfoOXXbsMNc5taArS5JTqlYS4moHp5qeZfa1MekF6/axeLkQRh8vRBSGMYShx0J8xPxxpvRL91rfQ778VXVQOa0x1IylTG7g8ghZ++hm6iJ/XgDomodnXqHqYTW3ab4J8gr1RtO2G7h/riv/ZInORN3IXWob0ZnQC7Q/sh6bHHISXVdoMjkfhwnUoeSosWWcFtSU+VWIrZPCXO9ulaD2B4FDRZij8tQXwR3SxGICMzRg0LnUM4ReMKCagRK/RJA+VZqEZ5EO3emi2bqaXxynoBmaXOuoTp4zdkVO22jnuvQrHbQj81/m7N3qg1CKUMDscjdu7LEHGeASKHiVlAvk41/PeBv5k5ePw8itORMtsZ0VabdAM/evR/h4UuXscJZeHMQOt1QF0j1ysBY5CnthxyLC9hjzDK0iWCJMG/Z1tDyrfmS0i3YZb7bxAY2bvIB1eDxy3Bo11X4kMSy9n/2jUEBehpJ5mk5ZmYLoFSbOvmV4eg6h/oaBgGbNQGxzi2+cmsZ1OZcMKsnMvoyGnPdA6Ip3AV+jqWICm7D+AQs2VFndqFGVqg7/43nvN2S4BflFXjesnrTZohv61ar8E2R5QXmbw+ScgG9bu3+FGLnqgzPPn8YZHWol56Klv46IODDAMha4HUn28rD/wV+DXaBywVTDdklOLZmXWC3Q39FvgshTLWIQiARfUVbPyUKQ2uBNdMPdBF75WoEj6x8Jd52Igemb8sirHFplavMK+aFxpItGJOG7iS9ZJRWljuiUnqWZl02sAeh7Dh2jK215osaEO5/2xKLS6ve8zc9Cd1OdilLE+isCOQOsfdFLcx9o3imr6rUQrjvoZjNpkYMwyGtkGRwOHomTCojoWUefAVMLX3LggZhm5OAdc58KNVhTZaLmkYbw2QGuoz0BTn6Iog9GPY3TKplu9RqJseu2E7q6eRjpNRbkjG+FpdpvzvpukNwUN1Y5BOWBRZaxDeRGg5LOt8EK6RrR+i9GyA36uQhG552KWkXYbbOd8xzyUn/IseixFEYlzDsxFmrmvOWjq800xy8jFOeDmXASntxUVV/T5wHfxEt+CxutsZLxOxDNeX0TGq835/IMoVB0H1+h3VDsox8TRLcrolE23OJrNpetY61Q06+MmyqcXSI970ZgvwCvAn9DzFP7h7OtEz+u4B+U3nIOmfb6aoIyt0TDvEvIx/S9PROm3GCX2uxyOonFHJCgD0m2DMcgB/xfKf5lM/IXL8kYc7d7FWyDvHODbKO/qlQRlZH4OuM7Fqc6r6KRhvPZDF4Cn8KaXjad6WOlrqdQ+O+LoFmV0yqZbvUZiOOXSqx+ahRZMBvuE7s7S/cgoXox+8xMJyxiCZuGYY9GVOPr9GSXvb4qS/i5H0yzfTlAGpNsG15LN+kppk+QcAD1A9GRkM15KWEbm50Bw+e8ik4bxAs2hzvqpr80krm5RRqdMuqVhJMqkF8jYrUMGz89Quq8SeAByXNej6yqHccsYTHGHjhpJHP2WovH6YWidg4+RI52kDLA2CCPJOXA+ioiOxItYJCljMBnr30rGrZroHYF9lYxXGYmrm9/onEF3o1MmkvS189GjuEfiORZlpBPNStvAt28kuoB1+PYNQmt2nIxmBVxSQxm7k4/HbueNOPp9hC5Kh6Jo2xR0ricpA6wNwoir3TQ0ZD+Kro5FkjIy17+VnIs0jFcZiatblNEpE2kYibKxFPWhWeh5KYfgrfLX4Wy3R0NNM9EiSdPQ2hL7JygDZNf2QOPOfVL+HUUmrn6L0Voti9GzpGopw9qgO3G0Oxc9VfUoFCHe0nltmKAMyIH+reRcpGG8ykjczgrVjU6ZSMNIlI1VaLrtwWgY8ix0Dr6PZmptih4vcDeew/8USsCeEbMMl3PRY9BXYjcPfuLq14GeLRWcHZakDGuD7kRp14ZmwfRFT39d7XvtG7MMl8z19y//3QocgwxRbxSyfgg9cK038t4edfZ9z/eZW5B3N5zyUk03/wPsjkcr4g1C08HKTDXNOlFm+8YhnzsAWNCcKhpGTTyAhvAmZV0Ro7i0mnNhNBYzOobRmqyH1vmZiGYODqS5z5EyWoxWmi1iNAa/0dkNTac0DKO1GIHWXHkRTTM3x8KoC3MujCjM6BhG67OQ1srBMzLGnAsjioWY0TEMwzASYBcNwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBSxZwLwzAMwzBS5f/vXuSfHPUtDwAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle ρ - 2 \\frac{d^{2}}{d x^{2}} φ + 2 \\frac{d^{2}}{d y^{2}} φ - 2 \\frac{d^{2}}{d z^{2}} φ - 2 \\frac{d^{2}}{d xd t} Ax + 2 \\frac{d^{2}}{d yd t} Ay - 2 \\frac{d^{2}}{d zd t} Az$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "ρ - 2⋅───(φ) + 2⋅───(φ) - 2⋅───(φ) - 2⋅─────(Ax) + 2⋅─────(Ay) - 2⋅─────(Az)\n", " 2 2 2 dx dt dy dt dz dt \n", " dx dy dz " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAApCAYAAADOKdZ5AAAOG0lEQVR4nO2de7BVdRXHPxd11AwtMR8kKqMjahqg5GNUBLXS0Gp85BNlohrfYmqSD7z4GHyQwiRZmRNK2lT00NRMU1BRUkIvIJaKxRgjaBA1pfgAb3989+7se+4+Z//2Pvt19l2fmTPn3H3O/p3f/a6z92/t9Vu/tTs6OzsxDMMwDMMwavQrugMVZRAwF3gJWAQcV2hvqofpmz2mcXGY9uXBbFE8hdmgwyJImbADsC0y5rbAQmAI8E6RnaoQpm/2mMbFYdqXB7NF8RRmA4sgpcd5wJ+91yuRMQHeAtYC2xTRqQph+maPaVwcpn15MFsUTylsYA5SegwFukK2jwA2Af6ea2+qh+mbPaZxcZj25cFsUTylsIE5SOkRZtABwN3AeKA77w5VDNM3e0zj4jDty4PZonhKYQNzkJIxBHgceBdYAuwP7E1Pg24K/BqYAjyTc//aHdM3e0zj4jDty4PZonhKawNzkOKzO/AcMuTewETgF8Dm1AzaAcxERp+Vew/bG9M3e0zj4jDty4PZonhKbYMsHKQnUfjroAzaTosBwNeQR7oMWAf8G5iHwnfNdJkBPARc6O37IPAYsAp40/vMwcBJwJeRkbuAfRL086PACqTnbxLsXwStaAv56gumsWkcTqsaNyJv7cMwewizRTyqaoOGbJxye/2AYcAGalnnZeRE4HaUHT8HeB3YDtVX+BFwtPeZ+nnOQcCRKAQYZD09w4HzSMf57AQ+6fVj3xTay4Ok2kL++oJp7GMa96QVjRtRhPZhdGL2MFvEp6o2aEjaX7o70B8VdCpznYhXgC8COwKnAd8GvgrsgbLjjye8GNVwwp2//QjPuG+FvYALgIeBxejHlNfy0nHoRz4qwb5JtYV89YViNW4F0zh7WtG4EXlrH0ZfPK+E0ddtkYQq2qApaTtI+3nPf6rb/gg6MOrF8+cWu4EbUu5LMx4Hfgt8WLd9FfB97/WokP26gY1QwpjPYcjz70q1h3Ab0ueb6OAB/aDqqYq2kK++4K4xlEtn0zh7WtG4EXlrH4aLPS5Gfb24QRtDgPdQOkVepG2PdrEFwNOov40eT2TeU1EVG4wE7gfORFN1TwFvAy9QlxqUl4N0KRL1OiSIz1Svk3eg5Kwy8IH3vD7kvYXoxDAV2BUYg5YdQroGPRUYDXwPFcta4m0PC8FWRVvIT1+IpzG0j86mcfZEadyIPLUPw9Ue87znAxu0811kn/PS7mBCktijXWwByvmZHPJ43Xt/TqY9daNdbHAtum2JH6W6Dzn8v0LpQb9HlbuB/BykRSj7fE9grLftcuQ5/xw4K+V+JGVj4Azv9cMh77+BktGORv/jpcBdaDrx1ZT60B+4GViD5qehdnURdvBURVvIR1+IrzG0h86mcfa4aNyIvLQPI449nkcJuAeEtHMi8FmUXLs45P28SWqPdrEFyIHorHtsAeyEIqvXZNNNZ9rFBmOBK4GlqM7SjsBg4FbvvfuQbU73d0gzSbsDhQfXE37gXIky0TtR5v71yFsbS++QXVHcgJYaPoT6FsY93iPIpBT7MBkYiK7O1nrb/KuLRlMTVdEWstcXkmkM5dfZNM4eV40bkYf2YcSxxwfAAjQVMRANZKBB+RZ0u4c8+uxCK/ZoB1vU04Gc07O95/MpvnBlO9hgY1RD6X3gFGA1ms6DWsT0AeBLwC7+TvURpOU0n+usf/wksO8Q5H29iAo+1bMCmAbsjEK0z6Bcg/cd/rlW+uXKBWjO/S/Url7z5lPoB7+U2pwu6AS1BtgN2DJkv7S1/bH33pyQ92Y6/zc1yqCtT1KNody/YdO4b2kchyT2eNp7Dk6zTUJX3Zeh5d3NWE7fOq+40sqxsRHS6WzgJuRgRTlHy7FjAuBwtFrwd8hHAc14dVObzvMvwNb5O9VHkF4j3LlpxBuB142m14L8I/B6PO4r3VrplwvnAtPR6rsjgH/G3D8tZiCbXISy+4MsQQlwwwhPjkyq7TTgY3XbhiFP+i50gAXpcmzXpyza+rSiMZTzN2wai76kcRyS2MN3kA5A+Rl7ePvPR+eFKKbRt84rriQ9NjYB7gVOQNHVyY7fZ8eEONR7fjCwbTiayvuP97efe/T/6b16B+mIFjoQ5SCdguZSVwHbo8JQZzu23Uq/opiA5iBf9L7nrQy/qxmnUwv5PdLkc/vS++BpRdtpIdvGoRPZTJTQlpQJlENbn1Y0hnL+hidgGvv0FY3jkNQez6Craz+CdBuKYJyL25TOtJBt46jmecWVpLbYDJiNkpgvAb4T4zvtmBC7es+rvOfBwMfpmTM1ynue629IMwepmYP0BXTVsBSFup5EFTmno9BcUVyG5k+7UOLh6pDPZD2/24FCqjejuf9ZDb5zF/RDrJ+jNm3d2IrkGkM5dXbRGPLT2TQuD62eV9ai1VUj0IqrI1CRwBey6a4z7WiPVmyxBVqSPho4B9mgaNrNBh2B1x/xnn1/5XnveQ90znkKeNn/cFoOkp+g/T61ZDOfQ5D3uwL4HAqfX4Xut3IDKh9eBFeh7P+FXr8ahQc7Gmx3ZRA6ILZFB8dkFLIOcg26Wr4J/fjCGIESJ4OrHPq6tj4uGk8jmcZQTp1dNYZ0dDaNs9c4bZKeV3zmoWKGP0CD4JUZ9DEO7WyPJLbYCiU+H4Cib3eH75Yr7WqDRSg6fRLwM2oaP48c09logdmE4E4dnZ2daXz5EHSFtxAZ2WcoKmK1Dp0AXwu8t8D77EjkteXJmSjMuwElgoYlHC4nWeJgPTugQWWR97wQ6eXnVeyDjLQSLW9+u0E7mwH/9V73R1XLs9J2HEqoHE38UHie2vpkpfE6yvkbNo2zJ02Nz0NTU3u20J+4bbRiD58zqOUbfR3dTqIVxlGO80qr9sjLFrNRVPU5lFwcxhRUSygPymSDuG1sg6YDtwP+gC74hqALsKNQjtdp1F30pRVB8u+lMj+wbTe05K8b+Dw9T3qgMuWPorBjo4JkWTHYe96IOo8xwBNEG9rFQCu9B2iedi0yll/ky0/au5DGBw4o0e5VFAr8NKrZ0Ne19clK4zWU8zeclsbgrrNp3BtXjYfSeuG7uG0ktcezgff+5j0vAO6M8d1ZUCZ75GWLkd72/el9vzLQcdgZox+tUiYbhLUxFZ3HxoR8djXKMboF6bqFt300Sty+FiWb9yCtCNK9KHw1BoUE+wp3oFotp3h/NzMQ6Ep4Fgpbl2V+tqzUa+uKaRyPJDqbxvF4DvglcGPBbcTlfnQuOxA5SVWhVS2LsEXVyOKYeAJFJq+O2G8w8Ffgpyi/riFpVNIejpYeLiNZ4bR2pt6D/QyNV/ENQHPI47FBxYUkVximcXzi6mwaN2cIumfVuygfc39URK/Le38FqgweZBiaJtnLsY0Tvc/vHGhjOoo+fCKl/+NU4FiUFNzOzlEzLScSXgvoasf9IR9btDtpaNisjU1Q/vNIVKurm9650EH8JPjIBQdJHaR+KLQ3Cy0H3YDu6ltf16FKtGKgTdH9dKYgvYyepDGomMbRROkcNWCYxs3ZHV3VLkG6TkQ5DptT03g+upAKciuK5L3k2MZs730/afoS4GSUSxGsIRWXnbzvuwPlCi0FvtVCe0UTpeUMlFvnP6ajZeD3OO4P2dmiKqShYVQbG1DuIiihfQdq05NhODtISXOQ9kKOwGpUnvs6lLxZVXwDzQS+QS25q95AzyIDvU4tca7D2+9x5FAaPYnSFqIHFdM4GhedZ9Azf2AiWvVxD6axCzNQisGF3t/LgMfQvabe9LbNR8u1fY5HUbwTYrTRje5R9yDK2bocLVGuz9+Ky1HI+f0XynGcgHuRzjLioqVfJPBy4CsoT2VZjP2zskVVSENDlzYGIlsuIDqy7TtIXVGdT+ogvUj6N7otM60Y6GA0yCymtlR5LM1DgH2JNAYV0zga18Gi0YBxCKZxMwYBR9I7mXY9PU/Ef0SF/rZGCbs3oWXTa2K0ASo0uABdnB5D8zsYuPJD71EF4mh5BTq/jAJeSbB/FraoAmlo6NrGcBSkcZn2P8bhM0C6hSKrSqsGmkffcibjkMagAqZxFHFOVBA+YJjGzRmOIsn1kfT96Fk1eSGajh+BarF8gJzXOG2ArrCHIpuUvYpxEbhqeRWKqB5GLXIUZ38wWzQiDQ1d2xhGBkVM7YQXTTMDdQX+HkbxVWbbDVdtg4PKRfQcVIxoXHUGDRhnoQHjFQxXutHy500D2w5DTlBXYNt76DxxLIrSXYJ+z3HaGIrqtZyDVppdn86/UClctJyE6juNoqdz5Lo/mC2akYaGrm3sg6LbqWIOUjSFGqjipDGoGNG46txswDCasxD9Tqei+z6NoVb5uKvus/NR7an5KIczThs7o6nSm1ERx0moftShGEGitLwC3Yn+ZBSV3t57bOa4P5gtokhDQ9fjqh+qHTWQ3jdJTow5SNEUaqCKk8agYkTjonPUgGE05w1U+uBolD9xKTrhv0Pg7uAeXcCH9F6ZGdXG1ujmmg9Qu8pejFYBTUnzn6kAzbRchlbnDQCeplYEdSVwkMP+Zgs30tDQ9bi6AjgOrXhOLYqXVqHIqnMaMlh/NE3xJHCx9/eHgc/ciByk29FgbkTjoi2ozP2dKBy7NOc+VoFmOnejlUtbhux3ODAnny72GR5F05d2jjCMEmMOktEu2KBitDP9UNG78cD5qFTK2kJ7ZBhGU2wVm1FmgoPK3mjZuWG0IyNRDamXUZkKc44Mo+SYg2SUGRtUjKowF8v5NIy2whwko8zMxQYVwzAMowBs8DEMwzAMw6jDHCTDMAzDMIw6zEEyDMMwDMOowxwkwzAMwzCMOsxBMgzDMAzDqON/M8ttk+3Y1moAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Jx - 2 \\frac{d^{2}}{d t^{2}} Ax + 2 \\frac{d^{2}}{d y^{2}} Ax - 2 \\frac{d^{2}}{d z^{2}} Ax - 2 \\frac{d^{2}}{d yd x} Ay + 2 \\frac{d^{2}}{d zd x} Az - 2 \\frac{d^{2}}{d xd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jx - 2⋅───(Ax) + 2⋅───(Ax) - 2⋅───(Ax) - 2⋅─────(Ay) + 2⋅─────(Az) - 2⋅─────(\n", " 2 2 2 dy dx dz dx dx dt \n", " dt dy dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAAnCAYAAAD0I7cJAAAOOElEQVR4nO2de9AVZR3HPy/qqBFqYd4SlbEBNRVQwkuK4KUktBwveUUZyfKCiolJqPjiZfBCCpOkZReStEkp08RMUxARRgl9EbVULMYYQKWoKe/g2x/f3c6ew549e9895/w+M2f2fffs7nnO93t2n2ef5/f8tqOzsxPDMAzDMAyjQo+iC9Ci9AHmAS8DS4HjCy1N62H6Zo9pXBymfXkwL4qnMA86rAcpE3YEtkNmbgcsAfoD7xZZqBbC9M0e07g4TPvyYF4UT2EeWA9SeowF/uz8vRqZCfAWsA7YtohCtRCmb/aYxsVh2pcH86J4SuGBNZDSYwDQ5bN+MLAZ8PdcS9N6mL7ZYxoXh2lfHsyL4imFB9ZASg8/Q3sDdwFjgO68C9RimL7ZYxoXh2lfHsyL4imFB9ZAikd/4AngfWAZMATYm2pDNwfuB6YAC3MuX7Nj+maPaVwcpn15MC+Kp7QeWAMpOv2AZ5GRewMTgPuALakY2gHMRKbPyr2EzY3pmz2mcXGY9uXBvCieUnuQRQNpPur+OiiDY6dFb+AbqEW6HHgP+DewAHXfBekyA3gYuNjZdw7wOLAGeNPZ5ovAycBxyOQuYJ8Y5fwksBLp+dsY+xdBEm0hX33BNDaN/UmqcT3y1t4P80OYF9FoVQ/qsmnKx+sBDAQ2UIk6LyMnAbej6Pi5wBvA9ii/wo+BEc42teOcfYAjURegl/VUdwcuIJ3GZyfwWacc+6VwvDyIqy3kry+Yxi6mcTVJNK5HEdr70Yn5YV5Ep1U9qEvaH9oP6IUSOmWdo2A0MmJYjH1fBb4K7AycDnwXOBvYA0XHn4B/MqpB+Df+9sc/4j4JewEXAY8AL6AfU17TS0eTv7aQr75QrMYQX2fTOHuSaFyPvLX3w/wQ7ezFaPK/7vhRBg8CSbuBtL+z/JNn3aXIjEvr7NMf+AANzeXFE8DvgI9r1q8B7nD+HuazXzewCQoYczkMtfy7Ui0h3IbGXr+NTh7QD8pLK2kL+eoL4TSG8ulsGmdPEo3rkbf2foT141FU3toKz40H6QZuyKaIvqTtRzN58TQqb73Xk5mXVLSKB0OBB4Gz0FDdU8A7wPPUhAbl0UBa4CwPrLPP95FIY1MuS1w+cpbrfd5bgi7SU4HdgZFo2iGka+hpwHDgByhZ1jJnfW0XbCtpC/npC+E1hubS2TTOnkYa1yNP7f2I4sdlqCK8DunuMhVVLHeigNoyEMePZvLifmCyz+sN5/25mZY0HM3iwbXosSVuL9UD6ObrNyg86A8oczeQTwPpORTMdYDP9icBR6FArRd83s+bTYEznb8f8Xl/FQpGG4G+42XAz9Fw4msplaEXcDPwDzQ+DRVtak+eVtIW8tEXomkMzaOzaZw9YTSuR17a+xHVj6VoxtCewChn3UTU23EvcG5WBY1IXD+ayYupznbeV09gF9Sbd002xQxNs3gwCrgSeAnlWdoZ6Avc6rz3APLmDHeHNBtIHah7cD3VF7GPgMVofHUnz/qewC0odfikFMuRhBvQVMOHUUvSj7vRD/NTqDtxEvoutd2OcZmMdLoapVSHyt1Fbfdrq2kL2esL0TSG5tHZNM6esBrXIw/t/YjqB6gyeR9VyGOB69F3HkX25Q1LEj+ayQuXDtTrNB7dMJxN8V40gwebohxKHwKnAmvRcB5Ueq8fcpa7uTvVNpBWEDzWWfv6hWff/qj19SI6qbw87Sy93eeTUAvucjRVMAi/cv3MeW+uz3szGxzPj4tQ/MNfqNwx5c3ngQtRC/cOz/pV6G7jc8BWNfuYttGIozGUX2fTONn1Kwxl0jgKcf1YCUwDdkVDnAtRTNKHIT5zBdl6Ac3pR1wvQEOdM4HzgJtQo7XRjLEVtM91J4jD0WzB36M2CmjEq5vKcJ7bKHvP3al2mv/rbNy4CWKV52+/4TUX98J3ABrr2wO4BFiEutQaMQ3YpmbdQOBrzv4rat7rCnFMLxcA09HsuyOAf0bcPy1mIE8uQdH9XpahFvZAqgNVTdtoxNEYyq2zaSySXL8aUTaNoxDXD4C3PX+PIfzs5Cy9gOb1I64XmwH3ACeiHr3JIT9vGu1z3QniUGc5x7NuEBrK+4/zvxt79P/hvdoG0hEJChDUQFqIWmruneFtqDV8AeFyJkzzWTcamTwTBV3FZRwag3wRff+3EhwrCWdQ6fJ7NGC7/ag+eUzb8MTVGMqr8zhMY5ck168gxlEujaOQxI9TUfzLGmAHlMzvvJCfm5UX0Lx+xPViC2A2CmIeD3wvwmdO81k3mta77jRid2e5xln2RcN63pipYc5ynrsizUSRQQ2kdShSfzCK3j8CJZx6PsXPj8PlaPy0CwWBrvXZJsyFOQkdqEv1ZhSHMavOZ+6GdKsdozZtw7E18TWGcuocRmPIT2fTuDwkva58BfUwvISGJ+ajLMrT0XBKUTSjH0m86ImmpA8HzkfnQ9E0mwcdnr8/4Szd9spzznIP9Dt/CnjF3TitBpIboP0hlWCzWhagxFg/RIJemdJnx+UqFP2/BPgS9bsHO+qsD0sfdEJsh06OyWj4wMs16A7tJvTj82MwCmKtN0W6HbV1CaPxNJJpDOXSOazGkI7OpnH2GqdN3OvKIajHYiX63m8jLe5DFeNx2RS3Ic3sRxwvtkaBzwegXp+7/HfLlWb1YCnqET0Z+BUVjZ9DDdPZaILZOO9OHZ2dnWl8eH90V7EEmezHmVTiCM5BqcmTMBoFmw0nejfhWah7cQMKPvQL/lxBvIDkWnZElcpSZ7kE6eWO5e+DTFqNptS+U+c4WwD/df7uhSeQjPbV1iUPjaE8OpvG2ZOmxmPRMOGeCcoT9Rhx/eiHEg++hxpKr3u2XYyu70PRnXaelMmPvLyYjXrynkXBxX5MQbmEojCa4q87eZ8T26LhwO2BP6Ibvv6o0X80ivE6nZqbvrR6kNxnqSwK2OZvznIx8JOUPjcufZ3lJtS0GD08SWOjwxi02nmBxmnXIbPcJF9u0N7F1D9xQAGPr6GuwH2BZzzvtau2LnloDOXROS2NIbzOpvHGhNV4AMkT30U9Rlw/HkBDI1+munEEerTEY2ioqF5Cz6wokx95eTHUWT+EjZ9XBjoPOyOUIyll8sDvGFPRdWykz7ZrUYzRLUjXns764Shw+1oUbF5FWj1I96Duq5GoS9CPB533D0QXv1bgTvQ05lOd/4MMAt19zUJDCGmOz7aDtmHJSmMwnV1M42g8C/wauLHgYxgiqZbmRXKyOCeeRD1iVzfYry/wV+CXKNaxLmkkihyEph4up36SqNOAY1GAWatc9GDjFuwX8A9SB+iNxpDHkG6l0i7ahiErjcF0djGNg+mPnln1PorHHIKS6HU5769E2ai9DETDJHuFPMZJzva7eo4xHfU+fCal79EqBGk5Af+cTFeH3B/C+dnuZH1ObIbin4eivGnd1I+FhkoQfMPJH3EbSD1Q194sNDV3A8ro6c3rsAv6Ad6JxjtfAr4T8/PKQBKDNkfP05mC9EpKO2kL4SqEtDWG9tO5UYVhGgfTD93VLkO6TkAxDltS0XgRupHyciv6/i+HPMZs5303gH08cAqKpfDmLWp3Gmk5A8XWua/paBr43SH3h8Z+tjt5nBMbULwcKKB9RyrDk36EbiDFjUHaCzUE1qL03Neh4E0vR6ML6b/QuPY4wicZKxuuQTOBb1IJ7qo16Blk0BtUAuc6nP2eQA3KNGgnbUEVwuWoQjiHSoVwMKoQstAY2k/nGVTHD0xAsz7uxjQOwwwUYnCx8/9y4HH0rKk3nXWL0HRtlxNQL96JEY7RjZ6LNgfFCU1EU5RrY4banTBaukkCJwJfR3EqyyPs38jPdievc2In5OViGvdsuw2krkaFTysGqdV5DDUGvXEaP0UGudk3j0NDD1tTbdAhKIeI9/l0owjuAmwnwmgLmlI6B00zdSsEdzjTNG5MWJ1dJqIA7uEoL4hpHEwfdGM0hOrhwR85741w/j8YZQzvjQJ2X0YzgqZFOIbLQmfbY4j+4NxWJ4qWV6AKejjwasT9g/xsd/I8JyajOuFQUiTNRJGtSh/gSDaeRbCe6hboINSLVtt6XUC6DwVuJcJqC8o8uxj1Vh5DdayXaRxMFJ2hUmEMo1JhmMbBDEI9ybU96ftTnTV5CRqOH4xysXyE7pCjHANUGQxAnpQ9i3ERhNXyKtSjehiVnqMo+wf52e7keU4MJIOEsnbBa0yQQV2e/wdSfPbqZiOstmAVQhKi6HwVcC6qMF7FCEs3mv68uWfdYeiC3+VZ9wG6ThyLeunGowohyjEGoHwt56NZf9en8xVaijBaTkJD9sOobhyF3R+C/Wx38jwn9qG6dzsVrIHUmEINanGsQsiHsDoHVRhGMEvQhX4qeu7TSCqZj7tqtl2Eck8tQjGcUY6xK4rHuBkl1JyEchalOrTQAjTS8gr0JPpT0LDODs5ri5D7e6nnZ7uT1zkBasvsi2KRtkmn+NZACkOhBrU4ViHkQxidG1UYRjCrUOqDEWj49zL0e30Xz9PBHbqAj9l4anOjY3waxRo9ROUm4QU0iWFKml+mBQjScjmaKdkbxb6s9rwOCrF/WD/bnTzOCZcrgONRyoDUbqAtSDscp6MLUC80TDEfuNT5/2PPNjeiBtLtqDVsNCZI223QBWw+8C3PPvcinQ/BCEuQzt1oFtlWPvsdDszNp4htw2No+NKuEa2B+ZmcUmpoDSTDMIzs6YFydo0BLkSpUtYVWiIjCeZnckqvoc1iMwzDyJ6hKIfUKyjPS6kqAiMy5mdySq+hNZAMwzCyZx4W89lKzMP8TMo8Sq5hqQtnGIZhGIZRBNZAMgzDMAzDqMEaSIZhGIZhGDVYA8kwDMMwDKOG/wGu637ovY0gIAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jy + 2 \\frac{d^{2}}{d t^{2}} Ay + 2 \\frac{d^{2}}{d x^{2}} Ay + 2 \\frac{d^{2}}{d z^{2}} Ay - 2 \\frac{d^{2}}{d yd x} Ax - 2 \\frac{d^{2}}{d zd y} Az + 2 \\frac{d^{2}}{d yd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jy + 2⋅───(Ay) + 2⋅───(Ay) + 2⋅───(Ay) - 2⋅─────(Ax) - 2⋅─────(Az) + 2⋅─────(\n", " 2 2 2 dy dx dz dy dy dt \n", " dt dx dz \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: False): False\n", "\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAApCAYAAAA2yS2OAAAORElEQVR4nO2de7BVVR3HPxd11JSyNBUKk6kRJQ1Q8pGGEJYaWo6PzAdyi6xMVMxnPq+PBh+kUJKVOWGmTWpaFmSSioiS0sULSOWrGGNEE6KmfALe/vju7dl3373Pfpz9Ouf8PjN3zr3nnHXOut/v2mv/9lq/tXZHV1cXhmEYhmEY7cqAsivQggwB5gN/BpYCR5Zam9bCtM0X07dYTO/qYF5Ug9J86LCRocwZBGyPjNwe6AaGAa+VWakWwbTNF9O3WEzv6mBeVIPSfLCRoWyYAvzF+X01MhLgn8A6YLsyKtUimLb5YvoWj6u56V0u1varQSV8sGAoG0YAPQHPjwY2A/5RaG1aC9M2X0zf4gnS3PQuHmv71aASPlgwlA1BZm4L/BSYDPQWXaEWwrTNF9O3ePyam97lYG2/GlTCBwuGkjMMeBB4A1gO7A3sTl8zNwfuAaYBjxVcv2bGtM0X07d4ojQ3vYvB2n41qKwPFgwlYxfgCWTi7sD5wJ3AltTM7ABmI8NvLbyGzYtpmy+mb/FEaW56F4O1/WpQaR/yCIYWoGGt/XL47EbZFvgKijqfA14H/gMsRMNxUXrMAuYCZzjl5wAPAC8BLzvv2R84FjgCGdwD7JGwnlsDq5COv0pYtgwa1RWK09almTQ2ffMnC439RGmepd5BNJsHLll7UXTbD6IZvWhFH0LZNOPPGwCMBDZSywivEscAN6KM9YeAF4Ad0F4GPwYOdd4TNEc5BDgIDet52UDfIb6FNB5kdgEfcOqxZ4OfVQSN6ArFauvSRfNobPrmT6Ma+4mjeZZ6B9FFc3ngkqUXZbT9ILpoPi9a0YdQsv7SXYCBaMOkKu7P8AzwOeCDwAnAt4AvA7uijPWjCN/kaRTBQd5eBGfCp2U4cDpwH7AMNaKqL/FsRFcoTluXsjTuRB3H2ITlTN94dJJOX2hcYz9Fa+6nGfsRlyy9KNsHaF4vWs2HumQdDO3lPP7J9/yjqJMK+3k443qE8SDwG+Bt3/MvAT9wfh8bUrYX2AQld7kciKL8nsxqCDegedNvogMH1JCCaAVdoThtXeJqbPqmox3bsJ+iNfeTxIP7UX39JzY3f6MXuCr7KoaSpRdl+wDxvTgL1feskM8ZBryJUlGKoBV8GAPcC0xC022PAK8CT+JL5cl6miwsGLoHmBfw/i8BO6EhuLJZ7zxuCHm9GzXE6cA1KDr+vvNaT0Z1OB4YB3wXbUK13Hl+T4L1awVdoRhtXZJobPomp13bsJ8iNfeT1INzgCXAlcCv0RU8qO6TgJtQsmsVSOpFmT5AMi8WOo/7hnzW91BAMSXjOqahGXy4ArgQTfNdjNr21sDdwInA71GAuRqKC4amB7z3WtTZzQYuz7geSdkUOMn5/b6Q97yIksamAV9Aw323oCj+2QzqMBBpshbNL0PtKiJsjrkVdIX8tXVJqrHpm4x2bsN+itLcTxoPlqKVO5OAiUj3C9BIxh3A1/OpamLSeFGWD5DciyUoSXmfgNeOAT6NgqplAa8XSTP4MBG4CHgKBaP7AENRu56GvPk8CoquhWyDoQ409LeB+mZ1oKzyU5zH0yh/c6ur0FK/uShaDOM258fLJRnV4TJgMIr61znPuVcRYcPbXppZV8hXW5dGNDZ9o2n3NuynCM39pPXgIrSKpwtdPX8b/b8T6T9NUhZpvSjDB0juxXpgMZraGYwCCICtgOvQ7SmKqHcUVfdhUxTwvAUcB6xBU3JQG337LQqGdnYL+XOGVlJ//t7/8zNP2WEo2noKbagUxCboquMUNFQ2hejOrpE6xeF0FJ3+FR34ZfBR1PGvoDYXCzoY1gIfAd5dp3xSXVeSr6ZQDV29NKJxVu32J85rDwW8Njv+vwK0lr6QTRvOUl+onsZRNOLBKmAG8CE0HfMYyiF6K8b3rqT9+pMo0nrxqPPonSq7BCUxn4eWttdjJa1/voziU2jl3u9QPAKateqlNiXnBvivu4X8I0PPEx7IBPGi5/ewKTKXzYDbgaPR1cdlMb+jkTpFcSowE61+Gw/8K0HZLJmFvDiT2ny9y3KUpDaS4MS5NLrmqSlUR1cvaTVO225nANv4nhuJrkZuQZ2Wl56YnwutpS+k03gG+ekL1dQ4ikY8AHjF8/tk4q8Ibsf+JIq0XrjB0D4ot2VX5zMWoXYdRTucL6P4pPM4x/PcKDQd91/n70HO4ztTdP5gaHwDFagXDG0B3AVMAM4GvpPgcxupUz2mAtejyHE8GoIsgxOpDeHdX+d9e9L/wEmra16aQnV09ZJW40ba7YyA5zrRyXo2MD/BZ3mZSuvoC+k1nhHwXCeN6wvV1DiKRjwATSdMRyuFdkQb450S87vbrT+JohEvHkMjGO7I0A1o1PRU4k0Zt/r5Mg4fdh5fch6HAu+lb37TWOdxvvtEljlDYcHQVmhp2zjgG2gTp7I5D8179qCktDUh78s7X+E9KHlrPUpgDPq+nVHj888xm67RdKCh6DQam77xsDZcPo14APBZNOqwAk0xLEA7D89E0yFlEceLKvkAjXuxDq06G41Woo1Hx8WTOdQ1Ls10THR4fn+X8+jGJkucx11RO38EeNp9c1bBkJs8/Ra1BDFQw5iLhvw60V1oy+ZitEKlG/gM9Yf6Ouq8FsUQdDBsjw6My9Cwp5cZ6CrsGtTgghiNkuq8qw/aWVcvcTS+nOQam77C2nA4WWmcBTNI5wHAAWhkbhX6n19BOtyJToBHZF7beMT1oko+QGNeuCxEGzX+EAUeF2VbxUQ04zGxFI10Hgv8gprOS1Agehda6DXVW6ijq6sriy8fhq4gupHRLnPQVccTKJkpiGlo/4EimISG0DeiJMGgZLSVpEu29DMInUSWOo/dSCd3Hn4PZM5qYDe0EVQQWwD/c34fiBK+2llXL3lpfBf56NuJknzHkWwap9X0zasNd5JOX8hW4yloWmO3hHVIU74RD0agTS1fR0HR8573L0Z9+Rh0BV0kWXlRpA/QmBdeTqKWH3QyuvVFGTTrMbEdms7bAfgDuqgbhgL8Q1CO4gn4LuyyGhly7zeyyPPcAHQgua/770kCmnfsyqgOcRjqPG6CLyr08DDZmLva+QH9n+uQSS84z7kJdmcQftCAkuGeRUN7H6O29BLaU1cveWls+gprw32Jq/EIGttILkn5tB6sRcuie4GD6RsIgW69MA9N+YRtApgXWXlRpA+Q3ovHfa//3XlcDNyc4PuzpsrHxHTUh00IeO8alBN0HepntnKeH4cuwq5ASeB9yGpk6HY0LDUBDX23Azeh/TiOc/6uZ85oNN0wnGrMq1YZv65xMY3jYfrmzxPAL4GrSypviGb14V50HtkXBUStQNZePIxGfy+NKDcU+Bvwc5SDFUoW9yYbhZbEPkfyTcmaGX+k+nGCV9Jti/IhJmMnkTikuYIwjeNj+mbLMHQPpzdQvuTeaEO6HnQLi6C9XS6NWR608/CbaP8fl5loZOH92f87TUuUjlFeRJVfhXbk9jISeTM8w//jeOBwlDTdrIFQnl5shnKTx6D9l3rpm6fsx01Sj0xATxsMDUBD2LeipYAb0d1s/fsptAppzdkc3XtpGtLJ6EsWJwLTOJwsOnjTN5xd0BXrcqTr+SgvYUuk8SyUd+X+zETLfW+LWR6Uv7acWhLt2cAXUe6Dd1+gdiaOjvW8iFN+Ebrg9XI9GmntN+WSkJ2c77wJ5bytAM5t8DPLIm8vNqL8NtDii0HUptyDiB0Mpc0ZGo5O/GvQttZXoiTLVsQ1ZzbwVWqJWH5zHkfmvIBOJh1OmQdR0Gj0JUpX0IngPHQiOJnaieAT6ERgGocTR9+oDt70rc8slBZwhvP3c8ADwKHAy85z7iZvF6B7Mo113he3fK9Tdg7K67kALQv25/i0M3F9CPNiXozyi9D2Dy5HoVHWozOo/yHoYuPf6GaiU4m/4WXVKMKLwU75xUSPVLvBUE9UxdMGQ0+RzRRbMxDH3CBzDkBL+5ZRW546kfpDeu1EFieC/TGNw4ijb1QHb/qGMwQ4iP7J3xvo3/FeiHQeCzyTovz9qG+5EjiM8F3+25EkOkJ/L+KW/yPaEPR9KDn6GrTkfG0DdXf5kfPT7BTlxSg0+BJnyv6wGO8Bsr9rfavRiDkLaZ+AMSlZnQhM42Cy6uBN33BGoVFh/4j4XvTddfhiNDJ3ILURoSTlQRcAI5AXVd75twyS6BjkRdzy3SgdYjTat2Y9uuAwahTlxUhy2ITSOrr61DOnx/P3SMrdIbTZiKsr2IkgDXH19XbwZ2IdfBJ60ZLjzT3PHYhOlD3O35eg6d2x9A2E4pYHtf270RX0vehu8kaNuDqGeRG3/Juojz8cjVCfjY4Xo0ZRXuyBRqszxYKh+pRqTgtjJ4J8sQ4+f7qRftPRvZAmUNtFuwdNAZyOctxeRbsS74g23ItTHrRwYC7a6+cWdBI5mNqNKI14OtbzIk55l0Voj65FKFfW6EtRXgxA+zMNpv/NmlNjwVB9SjWnhbETQb5YB58/L6KtBg5FU7fnoHb6GrraPRdtSfAotc0rVwP7xSj/LJq6vA954l4ELEOLCqbl+p81F1E6dlDfi6jyXnqAt+m/AtMQRXlxIXAkWg2b2QVyVpsutjInoM5nIJp2WACc5fz9tuc9V6Ng6EZ0cjHqU0/XbdDBsgD4mqfMHUjjAzCiiNNuQVvu34xG4VYUXEfDaCbmoURf699bEAuGDKO9sQ7eMMIZgPY0mwychraVWVdqjYxcsNVkhtF+eDv43dE+H4Zh9GcM2mfrabT1hAVCLYoFQ4bRflgHbxjxmI/l1rYFFgwZRvsxH+vgDcMw3sE6RMMwDMMw2hoLhgzDMAzDaGssGDIMwzAMo62xYMgwDMMwjLbGgiHDMAzDMNqa/wPmqFFQNfVv0AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - Jz - 2 \\frac{d^{2}}{d t^{2}} Az - 2 \\frac{d^{2}}{d x^{2}} Az + 2 \\frac{d^{2}}{d y^{2}} Az + 2 \\frac{d^{2}}{d zd x} Ax - 2 \\frac{d^{2}}{d zd y} Ay - 2 \\frac{d^{2}}{d zd t} φ$" ], "text/plain": [ " 2 2 2 2 2 2 \n", " d d d d d d \n", "-Jz - 2⋅───(Az) - 2⋅───(Az) + 2⋅───(Az) + 2⋅─────(Ax) - 2⋅─────(Ay) - 2⋅─────(\n", " 2 2 2 dz dx dz dy dz dt \n", " dt dx dy \n", "\n", " \n", " \n", "φ)\n", " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "is D*2 p*2 = D p (even: False): False\n", "\n" ] } ], "source": [ "for i in range(3):\n", " for even_odd in (True, False):\n", " for n, p in enumerate(p4):\n", " new_Max = euler_equations(add(\n", " product(vector_q(Dq(conj(φAxyz, conj_type=i), txyz, conj=True, conj_type=i)), vector_q(Dq(conj(φAxyz), txyz, conj=True, reverse=True))),\n", " product(conj(φAxyz, conj_type=i), conj(ρJxyz, conj_type=i))).t, p)[0].subs(simpler)\n", " display(new_Max.lhs)\n", " print(f\"is D*{i} p*{i} = D p (even: {even_odd}): {new_Max.lhs == Maxwell_source_eqs[n].lhs}\\n\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The conjugate \"just works\". It is not surprising that the first and second conjugates fail. Space is no longer treated as being isotropic. A different map can be generated linking the potentials to the EM fields." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gauge free EM*1 fields\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAOCAYAAAC8YEsXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC9ElEQVRYCdWX7VFUMRSGL4wFOJaAHQhUgHYgWoHSgYz/9p8DHSAlQAdoBSAdSAkrHazPk03uJLm5y90fwHJmziY5Jx/veXOSm91aLBZdLrPZ7CvtQ/R9tF/mfuo76Bw9pu9t5dvYJli/Ae4DuhdB3lDex7rFa9TY3qA39LfvZNmqiUwjmegf9eaE+C7wfUR3qb8YMo0NvGbOLeWu7VqwB8Ip1yJyu57INpO4M+7Qle2GnEXbUcO3sSbiSqfs1wqQP/HdrfA3XU0i6fnQghKt/F0WL+Y3ZdlYgqRA1o5rjMiwIDs4dmzNRO+X+v5MQDa1DAlCXEVG0vY4B6FuXIU/ulYWr0a8LjiYjEU87ueo5QHt4ghEvx8rZR/9gpq9n1Hlmj7PSf47MBRxgcdYJa8XbEUCTYlrQCSDXEyiOur9TtGUGEk5w+5XvSUn+MK9GcdKuuT5hfdePUGfhUjWlzBlh7ofS8U4tb+1sUIejGtAJJOlBY9YsM44v9Tn2DvUS7kX2maiRCVxl+1vVio+K3J/MD7hT7ofD8EaMo7SxLiiLOLMMU2Nq0WkC963Jsd2iZqZZqVPo/wI2M4B+bzwmRGODeVYFgfc+M2O36jlVOlJmTAgJAjr9Jip36HFCREHGjDHOSfF1SLSBYvJK5Dpi2a/HFRfj/0/Uf6oxo42I/jm22500HqOwf0Yh6enXCeJ2DxZp2lqbJPiKohkkIspq54H6YjUCyxH8ss8kiyofkOwhUyjzHe7H/OYlYjHJQZx4ctPkSQWV1aOK87TjKsgkkESoBRftqUpECTR3nse2b4PdSf3AvdS1h6eR9RzkN9pH+N7Dkmb32OuQYDN+3KfMs/GyXFtVxP6TBm7HyXZO8xMPEBz0afOAeLi89yJTd91bnviupvfgaN5iiK+P3Tpj3nENzmu8F+bicwmCXCg0h/JZTM8eyTHj0zt67A51i9yuD9pn6KCNxMEKMGDcdgfTSImn19mWrqyagzi3kMtPWXFHR3nmBTXfwC8QZEpaa9GAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bx - Ex$" ], "text/plain": [ "Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAASCAYAAAAjQzL0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADQklEQVRYCdWY/1FUMRDHD8cCGErADgQqADsQ7UA60PE//nO0A7ACBzpAKxDoQDrwvA7OzyeXPN7Ly/txwx0cO7O3STbJfnez2TzYms/nkzqdnp5+oH8MH8Xxy7qe9i48hT8x9zbTbWQXnB8B9gbejwCvkbPYVmzD+rUDXzPfuaNpKw9iWslG/2gXN0R3ge4tvEf7WQRSv8Bqxtwi9+znxHgINnKpIL7IN7LPJp6Kp3Nlv0BnceykoNvIIXxKN+tnD8BzdHc9+qKqGERmDhk0yNKfhXgWvym7uhIjObG0T11BDAY5va6ragZaU/J6mYBsogyJgU+NTKTvFQ5EW58a+qjqFS87tBpsbYYRr/h3WHlIv0r9qPNRegXf0PdqBErrkD5YT0WvMdzwCTz6aeAqYqxKnIh70KdWEFmoMYM0oV2dEt0D2Gt8xngpGJ8Z98X2wTHQVRBpv4MdfxICk8GSdmn7KEr66LiH3kWjfGoFkd2SwRMMVpmmFfohQEjbVZBoG/jfzoEsBdPQuv9xrJEF96pHaaV6eAzWkGlIE+IK2fAxoVnGp1IQNTgrbc7YJWxGmo1+/qTUv6u1zbovCUyUHkw+Vk1hrVnxCw43oFL0N6qA9E8L2pAYNYwT2mJu1HT62/As7jfap1IQNdjYPAOZXi/npVMNhgHgmIHIs9SxzkyMwIvfbqxbBbXqYdw0fapNwCBG6983dRGTctCnxuvMAo1JfZ8B6WqkLFysWPxaK/2YDUGNCkGY2aX5ccr6RAyCBlo+oatfZQNYHX4N0aBPjSCyUIelYtZg1CBbFw1UaY51pg6MbqiRpbnqHoPSoXdiwBdxHyDrh5+wDfqUB/E9K7vqoQG2bplRh3CJGgEElGvkVhaUFq9pLHwVgKV4EyLGG2xXVzvDMehT+NuZjXz2rQkpE/Oa6GlMYR+UXMfwgtC5h583Gv4L+/kQvrPQNcAwvjaq4RB3KlE5brHuw8q+v6cHfer8BwQbP5hw5iubHCHX+Wg8GOcyG5R8yq/zMvs15ro57LUIRNsTNAs7P20WMzf3d6xPKwsiobD2/KiFxGt9DpD8GtWmbHxzlE8ru84ES4M7sBloLbxgrPNFRL/xNNan/1YjVAVfRwKHAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle By - Ey$" ], "text/plain": [ "By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAE8AAAAOCAYAAABuMEFPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC4klEQVRYCdWX/VEUMRTA9xgKQOwAO4CjAs4OYKgA6UDG/+4/BzvAq8DRDtAOkA60BKSD8/fLJctmN7t7Ojp3vJl3L+8jyftKsjdZLpdVE+bz+Rv4M3AW5V+aesYH4AN4he19S7eVLH6+xbHX4DQ6eAd9jGPJHmhc++Ad9tqOwqSdvDSDBX4xLi6E7jO6U/CI8bNIoHHhq51yDz2SbwPykGToWsnbaS8gz2SrYDVu5QtwE2WXBd1WiogpnaSvAw5+RPdzQJ+pisnDYmwjkyv8WJFn8Zu6qa8hUhBrx9SXvLAR1eo7knacd0b7PkwObCMNDUFMWefBe1QDMDamTB9VRbJblK46r7MIi3uUF6D0BL7T4sgO0XknCmfw3jF26gzqsdgU6FcWE/6YUBNWg/7WDAP43ng6D0Y0/s48N2q2+DG8SbjBppgE5Cb1G/gJfAm6sc4coPMF3wiwt0kyFoudkqOvyl+h7zQB8gr5YDylznNB4bK9KLwv7AJagaUE7qO3I+tqMr5GdgFuEtJ9F06CjuCXjXALLSYuOjsYT6nzrNCURV/EBTKC3GR4Twx+pmBn1d6B7xnXyYTvQLS1Y52zLtSJGJvA+p6kQ+ikaQt/DV4lGeM9sOirOuyyePo6b+ghSK+RHZqOQNo/UDayqqfQ2rHMoMVEh4vfXi3Tv2W9PrL7Li6UPrkqfDA5/kH4EHU1QVeMZ6e2YICRmwjNu24lefpNR6AvcSZ1xlq1E4z/pKOedvoHI/bWH6ETE7rmkTVxnasozi/GkyWPyWmjUpUqFjK53nu+oB0bZOps/bYTC+SbglTsjr/JIfy1s46h2ZEdi2c3LRDpOfSRSc2KBBUyE+sniB13EoSNH/Qm1u8/Eyu10r64JnRjL23cv8KnoZNiXJmP68QTkoehkz1a4dhGHrYGK/MAXqDruw/P0YUqQ8OrjL1F8NUuOo7uvwD7GYvdrt9ihSx9e8oK2kwjLZ2k0Xh+AwyaLXw9+MnvAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bz - Ez$" ], "text/plain": [ "Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gauge-free ME*1 fields\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAOCAYAAAA/pHIsAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDklEQVRYCdWY0VEbMRCGD8YFZFIC6SBABSQdhKSChA7C5M1vGeiAUAJ0QFIBhA5CCQ4dON8nSzc6+e444sOYnVlLq9VJ/2p3pR1vzefzaiyaTqdfWOsQfhfXvCzW3kGewcfMvS10GyuC9Svg3sN7EeQN7X3s27yCte01fMN85w6mrTGdkHYFxF/6rWDQXaD7AO/SfzGO0DbwGrG3tLvKJTEenEX7KCdslwutKgPAiDAyrjrWOovjRx36jRzGrpTdP3sA/kB316NvVY3uBHZ5CKxOkv4smhfzm6K7K7iSIY+26ymcEMASOV1XjRngfVq+F8mITW1DcGFXIxOQvYIC0deuhj6qeptJr/b/lIJdAgJAr6hz2PYAuZG2Ue/DLu3Dn2Gz5hMsXTPnOR33FgwNu8CjrR58TYw1gm+IXaM6gQ0F6iFX9OsIQfRQPdAzxq2e2ugEXXgn4rc6zIO3kvIdOYGfxQns72FLO/QtLCTtdPyNQg89aNeoTgBIAnsE2DLSrYjOGa9gH7CakM0ADzmR0eV8s0Gy9Mv1YXCNP+k9OARriHRag+qKtmFnjmmoXRMm6tFfcIjgfJGefg2mmCPY+zZgjF3CZoTZYPmap61ybowloKWgzqhou7JHtfoxbQhrFj8huNinxkz/Dm5kpjjggDl+P8guneBHrXVvAWSIKNgGsOKjVDk4Lzeo7sf5H2m/F992iiPb0LbP0nsQJ6VyuwKDgWBGn6YFGBtk1yR9sGrLhgKV+kq4lNYluMWX/LKODtKg2pmMKaszYNZKEY97LtmFLs9eHdC4ZnOgcZ1Wu0ZzAht6eFKjglgMhQPUSd7zXjP1HPoC87HzAXM8lLD0cwO/IR+jew5KgVNjLkGAzfdhnzbPgsF2bZcLriBbSna9BzrId8cMOIBzUifPMELgs1zJmLrrfGzNfQOnAkdr9kZ8v5lSX00R32C7Vv7vCBBGsYfnplJ9jSzEUJp6sD7Ipa5izG+tfMJ7gXwKa7gRqHE6Z+k7xp+MIiZLZCM8XbMlBnHvwbZmd+NdjWsMsusff05JNLzNRWIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Bx - Ex$" ], "text/plain": [ "-Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAASCAYAAACkctvyAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADVklEQVRYCdWY4VUUMRDHDx8F8CgBOxCoAOxAtAPpQJ/f+ObTDsAKfNABWoFAB9KBeB2cv18uWXZz2ds92YNl3pubSSab/CczmQQ2ZrPZZCg6OTl5z1xH8GGc8yKbe4f2HfyRsTeZbZRNcH4A2Gt4LwK8Qk6jrtiC9WsbvmK8Y3vTxpABSKsC4i96EQy2c2xv4F30ZxEE/QKrmXqD3LWdE/0hUMiVAvAin+ihbQCYDWbFZctcp7H/uMU+um58Sif6xxJwZ9hul9iLpsEDwCpdYA2Q9HsunsVvyuq2pEpOrOzTOgIQwJI1beXFzLeG5vdDcmKMMiQVPjVOAG3LTiB0fWrYo2mp2Fxq/T+jYBeAANCy9A1WHtCujmu0eYG/hK9pe5wDpe+QXu5PRa9YuOETePTTTa+IvirpIu5OnwYNAIsK1A2eoFfZQXMftvSc0l/ayE/0+zLycjZIVQDQ38L2PwmByY2WdtB9QEj6aL8J00a9fBo0ACBJYI8BW2W4CGmHzUWqVxuMbtB+OQayfN0F7f7Hvkb23ZseRUv1/wisIcORJtMlsuFjQrOKT5sMNpo/4ZC5aZIOWYHJxgl2WgJG3wXsSfAU+ERNx/W2ppvtn7M5DWreVw3h2yHxV/PWlJBUNYwTdDE37jDaW/A0ftfbJwPgR8W3bQ1EX1WwDWDZh+mV4LiUTQE0OOxzM/PTYV/rCRgYP0st0EL9jyPSc3oCBjFa779qi5iUnT4N9gpiMYFKy55q6Tin7J9/Mf/1bvAPnRCQaNABT1RpfByyPhE30AUWfMJWLz9ufpU4NUSdPg0WABZ1s6RitgLYAHkPuMmlMdbVulM0w51QGqvtMSglTCsGfBH3PrKeOAlbp09DBuAdq7bVf4PjPWMmH8Alamw+DvmNvJB9pY/X1BdeX2ApnsCI8Zq1q3KU4ej06cH/CwKETzNrYDoB+R1gFtzBXr65je45YXMOn6CC/gP7xAvvaGwNR+hfG9VwiDuV1Ry3WPdg5bL/D3X69OAAAGAtxEZ8YeJD5FAPhLXgXGXSkk9DlqBVsDTGCgz2KAdCN3PM/tbn53zkeH/7+jSKALCN1trvte20FJ3hRH70a0NGr/byaRQliI0W7DZs5lv7z+lrfXlgHz319ekfZgpbqLAGqKkAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - By - Ey$" ], "text/plain": [ "-By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF4AAAAOCAYAAACmXKuZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC/UlEQVRYCdWX7VEbQQyGz4wLIKQD0gGYCnA6gKECQgdh8sv+lyEdEFeQSTog6YDQQVICoQPneY7d4z72zs7cERvNyFpJ691XWq28Hi2Xy2woms/n71jrFJ6GNb/V1t5Hv4cvmXtX822lCs73AHsLTwLAW+RDGCt2YePag2+Z79yVNBoy8XE3Nv/DOAkC31d8J/Ah4xeRfOMCqxV6hzxUrxP2/ICQayV+p75AX52NPX2r4KZlretgv2jxb52ZmOIN/t4B7jO+3x3+imvwxLP6KpAejPTrUbyIz1jFbcUUg1g7pudIfA6SKmlrI1a6PbLe/yP4bZR5MRFTpeLRbS85MTamij+4kmKctPYzCrIBAGC2nwWsPEZvXEtsB/j8DZBO0e2p3pAp0qu8KRJXJSbwGKfJLki8hcIAvTWeQX9cw0Y/2VOQ5Wt5hG4Cr5mTTCB2D+QH/AV+DQvaQPbx+VLaCLG3CTYWCyUmVqza3+BvFBD2DHtnPGMnDUiCkS7qgNB9ySyQGZxK/h5+b0JRRYyvsJ3Dm6TY3/MbKBBwWUQ3yGTSA9jOeEaz2SyejHJdKkCUvwAQK2OCfFW2xzF2E2lf7HxKMk8sH+CPjIuDQG9QmOtN6Y2/sTgG1vcGHyBHZT/6FXwZbYx34SRWfcyrxDMOk5Nv07joP0grvutHM/7qOy9e28ry4LGaTpBFUJUJNWVg/LXVc9WWV+nvYVJ8FmdgMLH+efwUfIXAl4xnp5jRc8AGApTKvf3R8vQZr21b0j2QKWsVAYSgnlb4jyP2Fo/UiAlfuc2Y9Eb7DN9PxjNY4tk4gkxVRwYID8Y+70ulMQebPq9rPYAF9k1RLJQG3ggIvFb0EbLSZlbFM44LDCDPWOOBDcuVkC+LzUPxmWilH+fG0gd+D8X3vYeitMJ82XgYG3vRhP0zMHXdUOOqYFwnnt6JZxM3tsflrSboqAVZEffwOb62/n+GL68uZP76Yb4H6OsoGTS+ZyH2MxZvmbjlDFv8b6EqOWcSZOoGr4znL7EJMh8cB2AdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Bz - Ez$" ], "text/plain": [ "-Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "c1_fields = {Ax(𝑡,𝑥,𝑦,𝑧).diff(t)+φ(𝑡,𝑥,𝑦,𝑧).diff(x): \"Ex\", -Ay(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(y): \"Ey\", -Az(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(z): \"Ez\",\n", " Az(𝑡,𝑥,𝑦,𝑧).diff(y)-Ay(𝑡,𝑥,𝑦,𝑧).diff(z): \"Bx\", -Ax(𝑡,𝑥,𝑦,𝑧).diff(z)+Az(𝑡,𝑥,𝑦,𝑧).diff(x): \"By\", -Ay(𝑡,𝑥,𝑦,𝑧).diff(x)+Ax(𝑡,𝑥,𝑦,𝑧).diff(y): \"Bz\", \n", " φ(t, x, y, z): \"φ\", Ax(t, x, y, z): \"Ax\", Ay(t, x, y, z): \"Ay\", Az(t, x, y, z): \"Az\"}\n", "\n", "D_EM_potential_c1 = vector_q(Dq(conj(EM_potential, conj_type=1), [t, x, y, z], conj=True, conj_type=1))\n", "D_EM_potential_c1.subs(c1_fields).display(\"Gauge free EM*1 fields\")\n", "D_EM_potential_c1 = vector_q(Dq(conj(EM_potential, conj_type=1), [t, x, y, z], conj=True, conj_type=1, reverse = True))\n", "D_EM_potential_c1.subs(c1_fields).display(\"Gauge-free ME*1 fields\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These are the same as the first approach. Multiplying the two will result in the same Lagrange density. For completeness, figure out the mappings needed for the second conjugate:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gauge free EM*2 fields\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFIAAAAOCAYAAAC8YEsXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC9ElEQVRYCdWX7VFUMRSGL4wFOJaAHQhUgHYgWoHSgYz/9p8DHSAlQAdoBSAdSAkrHazPk03uJLm5y90fwHJmziY5Jx/veXOSm91aLBZdLrPZ7CvtQ/R9tF/mfuo76Bw9pu9t5dvYJli/Ae4DuhdB3lDex7rFa9TY3qA39LfvZNmqiUwjmegf9eaE+C7wfUR3qb8YMo0NvGbOLeWu7VqwB8Ip1yJyu57INpO4M+7Qle2GnEXbUcO3sSbiSqfs1wqQP/HdrfA3XU0i6fnQghKt/F0WL+Y3ZdlYgqRA1o5rjMiwIDs4dmzNRO+X+v5MQDa1DAlCXEVG0vY4B6FuXIU/ulYWr0a8LjiYjEU87ueo5QHt4ghEvx8rZR/9gpq9n1Hlmj7PSf47MBRxgcdYJa8XbEUCTYlrQCSDXEyiOur9TtGUGEk5w+5XvSUn+MK9GcdKuuT5hfdePUGfhUjWlzBlh7ofS8U4tb+1sUIejGtAJJOlBY9YsM44v9Tn2DvUS7kX2maiRCVxl+1vVio+K3J/MD7hT7ofD8EaMo7SxLiiLOLMMU2Nq0WkC963Jsd2iZqZZqVPo/wI2M4B+bzwmRGODeVYFgfc+M2O36jlVOlJmTAgJAjr9Jip36HFCREHGjDHOSfF1SLSBYvJK5Dpi2a/HFRfj/0/Uf6oxo42I/jm22500HqOwf0Yh6enXCeJ2DxZp2lqbJPiKohkkIspq54H6YjUCyxH8ss8kiyofkOwhUyjzHe7H/OYlYjHJQZx4ctPkSQWV1aOK87TjKsgkkESoBRftqUpECTR3nse2b4PdSf3AvdS1h6eR9RzkN9pH+N7Dkmb32OuQYDN+3KfMs/GyXFtVxP6TBm7HyXZO8xMPEBz0afOAeLi89yJTd91bnviupvfgaN5iiK+P3Tpj3nENzmu8F+bicwmCXCg0h/JZTM8eyTHj0zt67A51i9yuD9pn6KCNxMEKMGDcdgfTSImn19mWrqyagzi3kMtPWXFHR3nmBTXfwC8QZEpaa9GAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bx - Ex$" ], "text/plain": [ "Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAASCAYAAAAjQzL0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADQklEQVRYCdWY/1FUMRDHD8cCGErADgQqADsQ7UA60PE//nO0A7ACBzpAKxDoQDrwvA7OzyeXPN7Ly/txwx0cO7O3STbJfnez2TzYms/nkzqdnp5+oH8MH8Xxy7qe9i48hT8x9zbTbWQXnB8B9gbejwCvkbPYVmzD+rUDXzPfuaNpKw9iWslG/2gXN0R3ge4tvEf7WQRSv8Bqxtwi9+znxHgINnKpIL7IN7LPJp6Kp3Nlv0BnceykoNvIIXxKN+tnD8BzdHc9+qKqGERmDhk0yNKfhXgWvym7uhIjObG0T11BDAY5va6ragZaU/J6mYBsogyJgU+NTKTvFQ5EW58a+qjqFS87tBpsbYYRr/h3WHlIv0r9qPNRegXf0PdqBErrkD5YT0WvMdzwCTz6aeAqYqxKnIh70KdWEFmoMYM0oV2dEt0D2Gt8xngpGJ8Z98X2wTHQVRBpv4MdfxICk8GSdmn7KEr66LiH3kWjfGoFkd2SwRMMVpmmFfohQEjbVZBoG/jfzoEsBdPQuv9xrJEF96pHaaV6eAzWkGlIE+IK2fAxoVnGp1IQNTgrbc7YJWxGmo1+/qTUv6u1zbovCUyUHkw+Vk1hrVnxCw43oFL0N6qA9E8L2pAYNYwT2mJu1HT62/As7jfap1IQNdjYPAOZXi/npVMNhgHgmIHIs9SxzkyMwIvfbqxbBbXqYdw0fapNwCBG6983dRGTctCnxuvMAo1JfZ8B6WqkLFysWPxaK/2YDUGNCkGY2aX5ccr6RAyCBlo+oatfZQNYHX4N0aBPjSCyUIelYtZg1CBbFw1UaY51pg6MbqiRpbnqHoPSoXdiwBdxHyDrh5+wDfqUB/E9K7vqoQG2bplRh3CJGgEElGvkVhaUFq9pLHwVgKV4EyLGG2xXVzvDMehT+NuZjXz2rQkpE/Oa6GlMYR+UXMfwgtC5h583Gv4L+/kQvrPQNcAwvjaq4RB3KlE5brHuw8q+v6cHfer8BwQbP5hw5iubHCHX+Wg8GOcyG5R8yq/zMvs15ro57LUIRNsTNAs7P20WMzf3d6xPKwsiobD2/KiFxGt9DpD8GtWmbHxzlE8ru84ES4M7sBloLbxgrPNFRL/xNNan/1YjVAVfRwKHAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle By - Ey$" ], "text/plain": [ "By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAE8AAAAOCAYAAABuMEFPAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC4klEQVRYCdWX/VEUMRTA9xgKQOwAO4CjAs4OYKgA6UDG/+4/BzvAq8DRDtAOkA60BKSD8/fLJctmN7t7Ojp3vJl3L+8jyftKsjdZLpdVE+bz+Rv4M3AW5V+aesYH4AN4he19S7eVLH6+xbHX4DQ6eAd9jGPJHmhc++Ad9tqOwqSdvDSDBX4xLi6E7jO6U/CI8bNIoHHhq51yDz2SbwPykGToWsnbaS8gz2SrYDVu5QtwE2WXBd1WiogpnaSvAw5+RPdzQJ+pisnDYmwjkyv8WJFn8Zu6qa8hUhBrx9SXvLAR1eo7knacd0b7PkwObCMNDUFMWefBe1QDMDamTB9VRbJblK46r7MIi3uUF6D0BL7T4sgO0XknCmfw3jF26gzqsdgU6FcWE/6YUBNWg/7WDAP43ng6D0Y0/s48N2q2+DG8SbjBppgE5Cb1G/gJfAm6sc4coPMF3wiwt0kyFoudkqOvyl+h7zQB8gr5YDylznNB4bK9KLwv7AJagaUE7qO3I+tqMr5GdgFuEtJ9F06CjuCXjXALLSYuOjsYT6nzrNCURV/EBTKC3GR4Twx+pmBn1d6B7xnXyYTvQLS1Y52zLtSJGJvA+p6kQ+ikaQt/DV4lGeM9sOirOuyyePo6b+ghSK+RHZqOQNo/UDayqqfQ2rHMoMVEh4vfXi3Tv2W9PrL7Li6UPrkqfDA5/kH4EHU1QVeMZ6e2YICRmwjNu24lefpNR6AvcSZ1xlq1E4z/pKOedvoHI/bWH6ETE7rmkTVxnasozi/GkyWPyWmjUpUqFjK53nu+oB0bZOps/bYTC+SbglTsjr/JIfy1s46h2ZEdi2c3LRDpOfSRSc2KBBUyE+sniB13EoSNH/Qm1u8/Eyu10r64JnRjL23cv8KnoZNiXJmP68QTkoehkz1a4dhGHrYGK/MAXqDruw/P0YUqQ8OrjL1F8NUuOo7uvwD7GYvdrt9ihSx9e8oK2kwjLZ2k0Xh+AwyaLXw9+MnvAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle Bz - Ez$" ], "text/plain": [ "Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Gauge-free ME*2 fields\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAOCAYAAAAWo42rAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAz0lEQVQoFXWS4Q2CMBCFhQkIbqAjqBvgBsoGOkf/GUbQFXQENjAyAhtA2AC/V3tGG2hyeXdfH71LSzKO48KWc64KeYeuiQrWiiVmBLyoL+hDG2iGiO3J2zTAM5qZKbAB1UdX1d6IHolGIFpP6kKnm7EA9JFJpZ8PLdIwy4TnD+U6MQ9IM82tb+s5g/GlTpyazQzWrdOM1lL3Fi9jn3tktyZWsYvaTqzteu7A7YRxA2vU1RtJboAePZiZXG1L4iT2+9ba0E8xEPopdoTe3r/YGx/SQ0OZAIYmAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle 0$" ], "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGEAAAAOCAYAAAA/pHIsAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADDklEQVRYCdWY0VEbMRCGD8YFZFIC6SBABSQdhKSChA7C5M1vGeiAUAJ0QFIBhA5CCQ4dON8nSzc6+e444sOYnVlLq9VJ/2p3pR1vzefzaiyaTqdfWOsQfhfXvCzW3kGewcfMvS10GyuC9Svg3sN7EeQN7X3s27yCte01fMN85w6mrTGdkHYFxF/6rWDQXaD7AO/SfzGO0DbwGrG3tLvKJTEenEX7KCdslwutKgPAiDAyrjrWOovjRx36jRzGrpTdP3sA/kB316NvVY3uBHZ5CKxOkv4smhfzm6K7K7iSIY+26ymcEMASOV1XjRngfVq+F8mITW1DcGFXIxOQvYIC0deuhj6qeptJr/b/lIJdAgJAr6hz2PYAuZG2Ue/DLu3Dn2Gz5hMsXTPnOR33FgwNu8CjrR58TYw1gm+IXaM6gQ0F6iFX9OsIQfRQPdAzxq2e2ugEXXgn4rc6zIO3kvIdOYGfxQns72FLO/QtLCTtdPyNQg89aNeoTgBIAnsE2DLSrYjOGa9gH7CakM0ADzmR0eV8s0Gy9Mv1YXCNP+k9OARriHRag+qKtmFnjmmoXRMm6tFfcIjgfJGefg2mmCPY+zZgjF3CZoTZYPmap61ybowloKWgzqhou7JHtfoxbQhrFj8huNinxkz/Dm5kpjjggDl+P8guneBHrXVvAWSIKNgGsOKjVDk4Lzeo7sf5H2m/F992iiPb0LbP0nsQJ6VyuwKDgWBGn6YFGBtk1yR9sGrLhgKV+kq4lNYluMWX/LKODtKg2pmMKaszYNZKEY97LtmFLs9eHdC4ZnOgcZ1Wu0ZzAht6eFKjglgMhQPUSd7zXjP1HPoC87HzAXM8lLD0cwO/IR+jew5KgVNjLkGAzfdhnzbPgsF2bZcLriBbSna9BzrId8cMOIBzUifPMELgs1zJmLrrfGzNfQOnAkdr9kZ8v5lSX00R32C7Vv7vCBBGsYfnplJ9jSzEUJp6sD7Ipa5izG+tfMJ7gXwKa7gRqHE6Z+k7xp+MIiZLZCM8XbMlBnHvwbZmd+NdjWsMsusff05JNLzNRWIAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - Bx - Ex$" ], "text/plain": [ "-Bx - Ex" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGAAAAASCAYAAACkctvyAAAACXBIWXMAAA7EAAAOxAGVKw4bAAADVklEQVRYCdWY4VUUMRDHDx8F8CgBOxCoAOxAtAPpQJ/f+ObTDsAKfNABWoFAB9KBeB2cv18uWXZz2ds92YNl3pubSSab/CczmQQ2ZrPZZCg6OTl5z1xH8GGc8yKbe4f2HfyRsTeZbZRNcH4A2Gt4LwK8Qk6jrtiC9WsbvmK8Y3vTxpABSKsC4i96EQy2c2xv4F30ZxEE/QKrmXqD3LWdE/0hUMiVAvAin+ihbQCYDWbFZctcp7H/uMU+um58Sif6xxJwZ9hul9iLpsEDwCpdYA2Q9HsunsVvyuq2pEpOrOzTOgIQwJI1beXFzLeG5vdDcmKMMiQVPjVOAG3LTiB0fWrYo2mp2Fxq/T+jYBeAANCy9A1WHtCujmu0eYG/hK9pe5wDpe+QXu5PRa9YuOETePTTTa+IvirpIu5OnwYNAIsK1A2eoFfZQXMftvSc0l/ayE/0+zLycjZIVQDQ38L2PwmByY2WdtB9QEj6aL8J00a9fBo0ACBJYI8BW2W4CGmHzUWqVxuMbtB+OQayfN0F7f7Hvkb23ZseRUv1/wisIcORJtMlsuFjQrOKT5sMNpo/4ZC5aZIOWYHJxgl2WgJG3wXsSfAU+ERNx/W2ppvtn7M5DWreVw3h2yHxV/PWlJBUNYwTdDE37jDaW/A0ftfbJwPgR8W3bQ1EX1WwDWDZh+mV4LiUTQE0OOxzM/PTYV/rCRgYP0st0EL9jyPSc3oCBjFa779qi5iUnT4N9gpiMYFKy55q6Tin7J9/Mf/1bvAPnRCQaNABT1RpfByyPhE30AUWfMJWLz9ufpU4NUSdPg0WABZ1s6RitgLYAHkPuMmlMdbVulM0w51QGqvtMSglTCsGfBH3PrKeOAlbp09DBuAdq7bVf4PjPWMmH8Alamw+DvmNvJB9pY/X1BdeX2ApnsCI8Zq1q3KU4ej06cH/CwKETzNrYDoB+R1gFtzBXr65je45YXMOn6CC/gP7xAvvaGwNR+hfG9VwiDuV1Ry3WPdg5bL/D3X69OAAAGAtxEZ8YeJD5FAPhLXgXGXSkk9DlqBVsDTGCgz2KAdCN3PM/tbn53zkeH/7+jSKALCN1trvte20FJ3hRH70a0NGr/byaRQliI0W7DZs5lv7z+lrfXlgHz319ekfZgpbqLAGqKkAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - By - Ey$" ], "text/plain": [ "-By - Ey" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAF4AAAAOCAYAAACmXKuZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAC/UlEQVRYCdWX7VEbQQyGz4wLIKQD0gGYCnA6gKECQgdh8sv+lyEdEFeQSTog6YDQQVICoQPneY7d4z72zs7cERvNyFpJ691XWq28Hi2Xy2woms/n71jrFJ6GNb/V1t5Hv4cvmXtX822lCs73AHsLTwLAW+RDGCt2YePag2+Z79yVNBoy8XE3Nv/DOAkC31d8J/Ah4xeRfOMCqxV6hzxUrxP2/ICQayV+p75AX52NPX2r4KZlretgv2jxb52ZmOIN/t4B7jO+3x3+imvwxLP6KpAejPTrUbyIz1jFbcUUg1g7pudIfA6SKmlrI1a6PbLe/yP4bZR5MRFTpeLRbS85MTamij+4kmKctPYzCrIBAGC2nwWsPEZvXEtsB/j8DZBO0e2p3pAp0qu8KRJXJSbwGKfJLki8hcIAvTWeQX9cw0Y/2VOQ5Wt5hG4Cr5mTTCB2D+QH/AV+DQvaQPbx+VLaCLG3CTYWCyUmVqza3+BvFBD2DHtnPGMnDUiCkS7qgNB9ySyQGZxK/h5+b0JRRYyvsJ3Dm6TY3/MbKBBwWUQ3yGTSA9jOeEaz2SyejHJdKkCUvwAQK2OCfFW2xzF2E2lf7HxKMk8sH+CPjIuDQG9QmOtN6Y2/sTgG1vcGHyBHZT/6FXwZbYx34SRWfcyrxDMOk5Nv07joP0grvutHM/7qOy9e28ry4LGaTpBFUJUJNWVg/LXVc9WWV+nvYVJ8FmdgMLH+efwUfIXAl4xnp5jRc8AGApTKvf3R8vQZr21b0j2QKWsVAYSgnlb4jyP2Fo/UiAlfuc2Y9Eb7DN9PxjNY4tk4gkxVRwYID8Y+70ulMQebPq9rPYAF9k1RLJQG3ggIvFb0EbLSZlbFM44LDCDPWOOBDcuVkC+LzUPxmWilH+fG0gd+D8X3vYeitMJ82XgYG3vRhP0zMHXdUOOqYFwnnt6JZxM3tsflrSboqAVZEffwOb62/n+GL68uZP76Yb4H6OsoGTS+ZyH2MxZvmbjlDFv8b6EqOWcSZOoGr4znL7EJMh8cB2AdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - Bz - Ez$" ], "text/plain": [ "-Bz - Ez" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "c2_fields = {-Ax(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(x): \"Ex\", Ay(𝑡,𝑥,𝑦,𝑧).diff(t)+φ(𝑡,𝑥,𝑦,𝑧).diff(y): \"Ey\", -Az(𝑡,𝑥,𝑦,𝑧).diff(t)-φ(𝑡,𝑥,𝑦,𝑧).diff(z): \"Ez\",\n", " -Az(𝑡,𝑥,𝑦,𝑧).diff(y)+Ay(𝑡,𝑥,𝑦,𝑧).diff(z): \"Bx\", Ax(𝑡,𝑥,𝑦,𝑧).diff(z)-Az(𝑡,𝑥,𝑦,𝑧).diff(x): \"By\", -Ay(𝑡,𝑥,𝑦,𝑧).diff(x)+Ax(𝑡,𝑥,𝑦,𝑧).diff(y): \"Bz\", \n", " φ(t, x, y, z): \"φ\", Ax(t, x, y, z): \"Ax\", Ay(t, x, y, z): \"Ay\", Az(t, x, y, z): \"Az\"}\n", "\n", "D_EM_potential_c2 = vector_q(Dq(conj(EM_potential, conj_type=2), [t, x, y, z], conj=True, conj_type=2))\n", "D_EM_potential_c2.subs(c2_fields).display(\"Gauge free EM*2 fields\")\n", "D_EM_potential_c2 = vector_q(Dq(conj(EM_potential, conj_type=2), [t, x, y, z], conj=True, conj_type=2, reverse = True))\n", "D_EM_potential_c2.subs(c2_fields).display(\"Gauge-free ME*2 fields\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I do not understand the implications of requiring a different mapping for the definition of electromagnetic fields.\n", "\n", "Check that the homogeneous Maxwell equations are all there somehow:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0e.B*0e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1e.B*1e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2e.B*2e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAB4CAYAAABy1lqLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d7dXctNaGh6wUEEIFBzrIRwU8dEBIBeF0ACu/zvmXxekAUkECHcCpIIEOwlsBOekg7335kYzGY3vkD3lsz621PLJlaWvvW9qWtr7mk48fPx7syiLw73//+55yeB5y+Tz4zxT+oWzOpm4E1oWAdWFd5WFujIARMAJGwAgYgXUgcHcdbOyeix/UGf1nlFL3P+r+d11fxDD7RuBKELAuXElBW0wjYASMgBEwAkYgH4FPtjRTJmPmV4n2vfw/8kUsH1P8MBN2o4tZsN+a/OmZ6civ5P8m/yCfeO90PdT9qmSBPzsjMBYB1WfrwljwnK4TgVCvflaEJ7r3CoNOpPzCCBgBI2AEtorAna0wroaYBvln+asyYsQPxhhLE+HrJ12PAq+6rR2zZG/rJ98YgR0iYF3YYaGuRCTVLQyx73X9rnsMfzsjYASMgBEwArtCYBMzZcHI+VM+jfJqXOgcPG/ypefvxORj+U/amFX4Dwr/Wr6XL7YB5LDNIaC6TEfZurC5ktsWw6pnX4tjlsD627mtojO3RsAIGAEjcAaB1c+UqfH9VjJ8Ln9VBlnAlRmyb8Vbc+SWGTOMrgchXu2FMDoWD+tA3xiB7SNgXdh+Ga5eAn0/fxGTv8hn5YSdETACRsAIGIHdILBqo0wNL3uvmFVqnXFaQSmwL+y1+GRpTe3CM2EsbaxdIg97yY7S1JF8YwS2iYB1YZvltjmu9e1kgO6BfAbs7IyAETACRsAI7AKBtZ++yMEeL9T4/rlGtMUXM2Jd7r1ePI4vFRcDk0NKviIsPOOvUrbIt30jkIOA6rF1IQcox5kLAQyzl6p3J4Nic2VgOkbACBgBI2AElkRgtUaZGltGQe/L/8+SgAzNK/DJUsQ48/VGYSyxwQirDC49c88x+BhlcUkjh3+scUmm2LIzAsMRsC4Mx8wpxiHAN1YXS2ZZSVH/3cg4ak5lBIyAETACRuDyCKzWKBM0NLZ9o+8XR0+dAmbyOICk7hTo/kZXXFYTZ8H4T7J7uvBrl6arA31jBDaIgOqydWGD5bZxlhnU+lV1j4M/4rd24yKZfSNgBIyAEbhWBFZ5+qIaWE4vxCj7VPdxBmpVZSS+6IQe5FfLEVPmFIbxxYzYP3W/asMy5dv3RmAMAqrj1oUxwDnNZATCt5aBsbXuO54sowkYASNgBIzAdSBwZ6ViMvPE8pS1GmTMhHGIR9fyQ2bFcK9vPf8agX0iIB21LuyzaLci1Qsxykm38Zu7Fb7NpxEwAkbACBiBIwRWZ5SpcWWGiT1YNLZrdRhjH8Rr1x9Zw/9qjcq1gmq+NomAdWGTxbYbpn8LksQl47sRzIIYASNgBIzAdSGwOqNM8LN5u8/guWgJhRFZjK7YGTjiR++ZQcNxsIedEdgtAtaF3RbtZgRTHWQ1Bd/iel/vZpg3o0bACBgBI2AEEgTWaJRh1LQaPAnfl7y9HzJ/08EEMwd/qLOwZhk6WHewERiEgHVhEFyOXAgB/kj6c31zGSyzMwJGwAgYASOwSQRWZZSpUWXpInsDqoMD1oioeOSUL0ZnT5zefa1AjEpvOj9BxwF7Q8C6sLcS3aw8ce9uXKWwWUHMuBEwAkbACFwvAqsyylQMsVFd+ywTs2FHy2WCQflS4Q9DZ/V6a1UiubDw6HWCR3q7E2ysC2mh9tzvpLx7JJz2aiw+SscgGdfJSbjTOHJqI2AEjIARMALLIXB3uayycqJRZT/Zqv9zRvz9pOu9LpbNvE8k+4fCWmfRkjgXuw38vpDfdUDJrLwpH/7agLJcdXnOKvQwYiy54uS4Vf9Bep9I4t260AdQeGddyADpdgniWH14qxxYaWFnBIyAETACRmCTCBT7nzJ1Qmgg+Z+uoxmlPpQU9396/1a+Rzz7gBrxTpjeUzLwpROdXSYjsqqSKA+Wcj6Wz0yKXQcCwgfDlYEI/59dB0ZzBwtr68LcoM5Eb6w+KB3/a/md/E9mYsVkjIARMAJGwAgsikDJ5YvMIsWDAM4KFTpKdJY8q3IWrVER4pHR34xKPSBRKMvn8lsNMt7reqfr6pc2CgNmyRi8oO7bLYOAdWEZnAfnMkEf3pGZ0scl8IPzdgIjYASMgBEwApdEoIhRpoaR0f+hLnbQq8Z1aGLHP4vAY8VgNgaDqHTHhVHrvr8EIH/KO136qcerdWAFZqMdZaorGhuj6VxJQuvCugt6jD6wfBHnJYy3OPjXCBgBI2AENobA7EaZOoY0ih/CNQSOaJR5pmwIahlxVSZgC67RUCq9fPEb5dm3HI/lqX8qDvXk6l3ACsymzJaRdkr6qygHYWxdWHlJj9SH2G58sXLxzJ4RMAJGwAgYgVYEZjfKlMvT0Ki2ZtgTGJc6xsa1J6pfDUSA/V0/qlw44AN8eS7ilAe0z5UhM2W/FGFgu0TBrPjS0u3CMxvn1oXZoCxKaJA+6LsTB3hiO1KUORM3AkbACBgBIzA3AnfnJKiGkWWLcTZmKOk4yh8b16HpHb8bAQ7ciCf8YQyxIZ5Tzk4MI4WxBI7/WYtLHNnvxOEgPPP/cZQPHaZnCms7xZFZsJO/NAjpmaGjnJmteKAw9h2+kR9502O/U1zSx2V6LEN7pgt6T3XhoHci1+2r9t+EJqPsv+u5nuUL717KB5NBTmmYNUZG3BM986fi8MpSwzqP6u0tZmDXDA+v7c2EwFBdoM7G2X9OLq3qqnzKNQ5AfK/ntjpXVBfAQ/nOqg8JvUvqAqLxDRmjD+BhZwSMgBEwAkZgcwjcmYtjNeZ0NqccZ/9Z4MX7jOYqFNEJ5fImIRmN5mjEJK+q+BhgdIaiofSaCAqjk4QRhnHBf7G1GWREfaTrZF8g6XVh2FT56/4rnnXFfEib434gTUiHXPw33I2eOVSEDtmYvVkcSgIfGJ3N9Mxe0fke5EQPXuANeemwwze08dsMLzBDh+wKISDcwXeoLjxUGgYhqL91XdU9dRkj+wtdbQaZXhfXBfKYWx/WoAvINUYfPiidZ8pAz84IGAEjYAQ2h8CdGTmuZlQm0PMI5wTwepIy0l93GtWBpIPJ1WtoKB5GDoYXMwIHPTM7xezYySwY7xNHOfYZ1hh8XQZdQub0NvCQGk10wpAjGjl0yNL3p0QaIaLJLEjsqMNbk3fCzsncoFo9wsuXoo8ByUwKdHDPbr2TX/K1UXYCy6wBo3RBHGBYM7Ncf6N0T715cYa7YrpAvuIBnUzr+yR9CDKtQRcQb4w+kKYuI4jYGQEjYASMgBHYCgLV8kU1xjRk/9U1pEGrlmMhaOgcxBkYgsY4OrHQomNx1ineJJ5jBqLzMd5vyRffuf/Hg9HCnxSfiKew1iWMScQvdf9/iodh9qv8P5J3XbeUY18ZsgyyNhK7iHSE8x92GJTRMYvBbEWVn/zBSwyVngNHolzMijU72vDbDFNQv0v51D119bkulr91YYNcxOt1So+ewVPTRf3B8Gg6MOrFRu83qQcIKt5L6wJGP8YPRlCcLWPvLAMXfa6kLpDv3PqwFl1Atix9IGLDVXrQCPOjETACRqBCQN9t2tnR/V3DaARKInAX4qqkdBTp4A52SsvoPsesp53lwXSGJpjCc5qX6OR26NJkm7iXbA/E6MlyOYXzUeKPpOnAdxpIYKyLmR2MsqlG9yHkS31hmeBgp/TReIpp24yo+C7LF03qPrxh6IBLnHUjDPwIGzNTpmQVXeTF+J3agY/02owueI3GdzQaqvi5P0q/Wz0AA8k3WheUFj2gXmBYM/NJnfhL12gXaIzWBTIWjVn1QfTWoguIh3FV8cODnREwAkZgDgTCd25Uf3eO/E3DCPQhcKfvZeY7OhZsnv85vRRGJ+gmhKVLbLrIvueF4tPhsZsHgaci87pJShjT2aFDR/mcw5tld3T0Kd9zcRWtWnbUFa+a4RGd2sjJpAndI6d00YiqjUpojaUn4nGPENhERx50yJud3/i+1w88gnFtKPXwB2aVDvQS9cuxCEzVBb5h1C+MX2bMauO9hyHKs7gukL/4mlMfLq0LiDRWH6xDoGdnBIyAETACm0NgslGmzkB1gIN8ljPWl5CgcxvfnZslADji4xghtZsHAZYtRlybFF+FAGabWp3S0hFlPxTl91YXU/7nHDOmGOptDgOvNnBEt5rdiRH1TEes1fFOF0soK8NOkZgxwmBKZ2g5pOBIXj130mxkBM8pLV7Db21AEpBLT/GQDZ6bnXcO/2hz1Ptm/m3xHDYOgam6QNlQF5gt+0zlelTPOlgizey6QF7Kv6Q+ZOlC5AO/z4nXoboAuTH6QJqcculj1++MgBEwAkbACFwEgbsFc6UznNshho24HGhImiLs0+ERYTr/dE4wLGtDYmqGJWmnvCkfRvP7sIzGBsZN03A4KD0G2V/yPwS6jJ7/T8/831nrEroQD6weh/umV3e0RAPe6ChXM13hGfrsf2pbWkB5cGEkkvZoRFxhvIuHFOi2NqD6aFbxwg8daPirXKAHzVrWkO9Zeor3IKRDFtKzXPMzXXROwbHNIfNs9awtg6FhQV4w2KweILPkmKQLCW4s4WUpL0t6c1wpXSBvyoWrhD6c1QUYCPWjVx8UZ4wuQH6sPsC7nREwAkbACBiBzSFwZ26O1QjTaY97hm50z7K37zLyiZ3/jKjloohXOjqMhtOhwlh5hAzyJ7uStCNzyoP///pdz3Qgwf+dLoyY2ukZgyvKRHxmoAg74OviOGrKjCVf0cUZtW/1nv/y6irTV0pAR6zNMePGCD+d5G/kp8v6KH86VLw/4ldhOIxIyoPygQeMHU6DpL5VnW759VJGvTvo+RxNokVXzeYqDfIjWzSeovE6hB6HQHDkPzQpB+oTfHNCaZfhxfuoN7q9rBOfm9YD0JMMk3ShWQKiR/0aMkhTShdgraQ+nNUFGBAeOfo1RhcgP0Yf+G68J7GdETACRsAIGIGtIfDJx4/rOHRNDTyzCBgKdGbrjvCSgCpfGnWWwFWdkpi3numks28udtTjq2y/JO1sJhaKKFkx6ljK2mWAdHKiNNQDOr50+GZxY2gqDUbqjfyTWbsx9PoEET1mojCM+cPeUS7wxMxjbeiOIqREomE9aAFPuDDYUM/utkQ5CVKaVekCDIqnQTqm+J26MIbeCUiNAOU3WB+UhjrL4UXVX1A0SPrRCBgBI2AEjMDqEbizIg7jshMa5Es5ZjSYhaGBTx0zNJyg1zUDlMbtui9JuyvPS4XTiauX/Q1kAuN3NoMs5N1LU/kxO8bsYuV0T/kz+/biNuTkt5feSezzAQwCgNkUB2Zz4VayrpakPQW/k7SqB8y0/Zi8YNbnaDY2edd1uzZdgM/O+iv5hupCL70uUM6Ej9GH2G7EZfBnsvBrI2AEjIARMALrQmA1Rpk6A3FW5WRmYkHIGNV+LV6OOrfhmTCW1Ix1JWmP5alIOuGFEcuMQuwoZeWj+PcUcdZOVSZNZg5eJUxyGMdPSnvSAc+kl5DqvxU9MAIrMBvtlJ7ZxUk0ksxL1tWStBMRZrl9KirVsl1hy4DMm6FUQ5msQhfgXfyc07FsXcikNwgy8TdWH+K3Jg7uDcrXkY2AETACRsAIXBqBu5dmoJE/DeqjRthij6ED1ZUfexW6DrDoSlOHl6RdZ7KuG5Z6VstRB7DFLOXk5XeN/HJoMjJ/X3mzTJUlhOxT61pCm0OvwULvIzMxY2cVewmPfVmyrpakPVbennTMlLLHkXrx4QzvPWSq/Ylr0AV4PFd/h+hCDr0+XNrejdWHaJTFwb022g4zAkbACBgBI7BaBFazpwyE1Omh43Ij/9NLIaa8WbbGbF2cLXujsF90sfmO2QiOSR/lStIexVDhRJKXjhLLPuc2tApzvgx54UJnn7q1utF98WQ9mLEaCE/rwhk8p+iD0tJ28K3Z9Z+gn4HQr42AETACRmDDCKzNKKMjyEjpp2pco1G0GLzKk9Pv/pRfz1zoniWLdKjgiyVt6TuWNNEZwD3RO45AJy6G5dFSMj1n0VY8lheBAzM2nHJY0wnvXsoffeCIaNoZgV4EVL+y6mokoviz6wG0RTfqAo/MUnMUPfrFskJcNWBye+vfa0ZAdYVDPt7KHz1ods34WXYjYASMgBG4PAJ3Ls/CEQdvw9OUvVtHBHMf1JjTET3Ir42u8MwythjWPAzipd5hrLH3iA3ybOrHrw0pPUNzCG1Of2RmiTTNwx/Y38KeDzsjUASBgXWVuo3hVEIPkA9d4jQ99OFNyIcBD5bYkW9TPxRkd20IqD5gqFMfqu/stclveY2AETACRmAfCKxqT5kaV2aaPghaRsJPDlkoBbnyZGYKQ7DrkBEafNzrW6/6va/fLwO/VYDu6SQe/bHsENqKmx4mwIgv+9hSR1jXXqc0nu+NwGAEhtTVhPjsegDtwEtqdPFdYEAi6hf5pu/1aHelCMRBvMXajCvF2WIbASNgBIxAQQRWZZQFOTF8mBFa0jHyzkb+rk3ijMSy94eOYeV0X+8D0j1G23NdL9I4tzEP2bShqSvyAAYvAo3o0flohsV39o3AVASy62rMiDqb3M+iB4EeS9Fq2gpjwCQO2hz0zkt4I/D2Gazi25nWF6NiBIyAETACRmBTCKzRKGOPFieEsUyp+KyQ8qAjWRldbSUHHyGcZYonTu9JywZzOrRHbihtxa+MPvnkCV/1MkiFMYtGWHFMlIfdlSEwtK424VH62fQA2qIXBydiVm2DFPGd/etGgBnUk+/vdUNi6Y2AETACRmBrCNxZG8PqjGF0MOK51Eg4y6Bw7FlpczT2jNCfGEMKw3jCeGTPS+V0j+EU3VjayF7PCgRi5NU3mxfztG8ExiAwtq4eCupBJUegj17Vy9PQM64xgjrNfhBQHWDpOa4ewLp99K8RMAJGwAgYgW0hsDqjLMDHXhFmy4p3upQHBuCHtmLTO0ZgMYZODMTwjo5hszPAoQeVG0tbiZl1aC7F8X6yW1j9WwCBsXW1hB6IJnr1qy50D8dBOwxIpDrBgTitelul8M+1IMCg2dHS8msR3HIaASNgBIzAvhC4u0Zx1Nni6HkMM/ZpLbEshTy40hkvlgtiYD1sdAYPeuYdHUVms/A59eszXRhxTQNuEG2lx9H5jDMX5EfnlIu87IxAKQQG1dWCehDr+/fKg4GZowNvgj50zWyXwsZ0V4ZAqAcMYDFgZWcEjIARMAJGYNMIrOp/ylIk1eAu+p9lyg+D6qmutANIp/BkNF5hHNVNB/Ygn3QYbxhSxG9b5phNWzSgSUc00vxL9/xnWfXfZXqXzhYo2M4IzIeA6ld2XVXcInoQ6j+DMu+QTM8ciw9fdL75W4r3eq6XMurZ7goRUB1gMIwZ1OZA2BWiYZGNgBEwAkZg6wis1igDWDW2dMB+k18ZQFsHeyz/kp8O6o38riP7x5J2OiNgBIzA5hDQt5DZVIyyT3V/MnC2OYHMsBEwAkbACFw9AmvdUxYL5pluvlWjyxKVq3CSldmH5p9UM0v24ioAsJBGwAgYgfMIcBruExtk54FyDCNgBIyAEdgGAqs2ytTgciw2xkjrcfTbgHgwlyzTepWkYhkje+y8XCsBxbdGwAhcJwL6FrJygP28/iZeZxWw1EbACBiBXSKw6uWLEXE1vvx3GX8OuvtljJIRo4xDPthXxl6ynxV2sk9N4XZGwAgYgatCQN9Cli2ymsBLua+q5C2sETACRmD/CGzCKKMY1AizpO+FfI+O7r9eWkIjYASMwBEC+vbHE3G/1L33kR2h4wcjYASMgBHYOgKrXr6YgqtGmJHRf4aGOX3leyNgBIyAEdgxAvruxxNpbZDtuJwtmhEwAkbgmhHYzEzZNReSZTcCRsAIGAEjYASMgBEwAkZgvwjc3a9of0sWRln5I2pcPMnxmcK9BOYWE/9eCQLWhSspaIt5NQhYp6+mqC1oBgLWhwyQHGW1CCxqlElZ+F8Z/mCZUxWXdGwM/2fMUPec5sgeNQ7SsDMC14SAdeGaSnuirPpWsmyQg5Z2ffy85LxU2zSxhKrk1uk5UDSNvSBgfdhLSS4gx9rauMWWL0pwGvZf5f80N84BVE7lYhaMP5s+Mvr0/FHhX8mvTjGUT7x3uh424yrMzghsFgHVZzrR1oXNluD6GFed4oANvt98L3e3ukAyFWub5ihN6/QcKJrGHhA4pwvIqDju7+2hsBeUQXVmNW3cIgd9SGAaPY60L2GQ0QFlaSKGGPQfhfx0Wztmyd7WT74xAjtEQPXeurDDcr20SKpXfFv5O5L6T+0vzdNc+Ye2okjbNAeP1uk5UDSNPSCQqQuI6v7eHgp8QRnW1MYVnymTsN+iJPJn/18Z0WRW4Ln8o/8v0/N3Cn8s/0lbuSqcPx/9Wr6XL7YB5LDNIaC6bF3YXKlti+Hw3fxcfut3dVvSVCPqxdqmObCwTs+BomnsAYGxuoDsSuv+3h4qwQIyhLpy0Tau6EyZBGSZIApRqhFnhuxb5UOHNHXMmGF0MSV55EIYf9A8u5F4lJEfjMCyCFgXlsX76nLTt5PBrwfyMWY27SRD6bZpDnys03OgaBp7QGCwLiC09Jw+oPt7e6gBC8ig+nLxNq6oUSYM2TzNHz7/WQhP9oW9Fv2jfQ7hmTCWc9VO4bEh3uXeiFpQ31wjAtaFayz15WWm0WIjfXMgbHlOpuVYum2axt1tauv0HCiaxh4QGKQLCOz+3h6K/SIyXLSNu1tKZCkEo6n35f+nYB59e9TeK9/HMe+goJz8+BVh4Rm/lMEYs7ZvBIojoHpsXSiOsjNQPftFF6PWrICoT7TdEjLiv3jbNAce1uk5UDSNPSAwRBeQV/EZgHd/bw+Fv7AMqjsXbeOKGWXCkUa7r6M4C9QCkAaWpYhxtuwNoOoZpawMrqCgP+oZJY1LGulQYBHbGYFdIGBd2EUxbkEIvpucpMuM2RYHtRZpm+YoSOv0HCiaxh4QyNEF5FQ8+n7u7+2h0C8nw8XauCJGmZSCgzZY3vKiJKbKhyUonJxVj9jq/kZX3PMQOwycGgY/R6eHpelK8mnaRqA0AqrL1oXSIJt+hYDqWvzbkZL7hYugLd4XaZvmYN46PQeKprEHBAboAuK6v7eHQr+gDJds44qcviiBWP/7h/xSB3wcRJtOKH61HDEtP4WhlMyIcepj8dm6NG/fG4GlEVAdty4sDfqV56c6x+Z5/urkU93HVQqrR0W8Fm+b5gDBOj0HiqaxBwSsC3soxe3JoHp3kTZu9pkyCYIxxPRxSYOMmbAbXV0nKDIrhnt96/nXCOwTAembdWGfRbt2qX4LDFL/iu0bnhOEJdqmOfi1Ts+BomnsAQHrwh5KcbMyXKSNu1MALjaBf5Ay8YejpRzrPfvywChks95mRnBLAWW6u0fAurD7Il6fgOHbSqNVLx1fH5cnHC3RNp1kOiLAOj0CNCfZJQLWhV0W6/qFulQbV8IoYwYrWpizIy+gmAXD6GrNQ+/JH8dGTzsjsFsErAu7LdqtCMbyRf5ok+/xFlzRtmkOAKzTc6BoGntAwLqwh1LcvAyLt3GzGmVSIpYuYjRVe1wKFcf9QPdNB31GVtjP1mq0daRxsBHYIgLWhS2W2n54jsvD40DYaiVbqG2aQ37r9BwomsYeELAu7KEUty3D4m3crEaZsI+NczGDSI0rJyq2LkvUOzbmwUOx/WyibWcEVoGAdWEVxXC1TKj+8R3mOjlsaYWgFG+b5pDZOj0HiqaxBwSsC3soxW3LcIk2bm6jjMaZvV7xKPpSJcJs2NFeBuX5QGEvdT1cIP9Scs1KVzhsZVnRrHLnEtsJPtaFMwW+k3I+I+X41xPxeauc+fau3S3VNs2Bg3U6E8WJdTczl+1G2wE+1oWM6reDcs6QclyUGbBZtI27O07MzlSP9AYBijqB/JOu97pY7/k+yewfCmudRUviXOQ28PpCfskDUGrZlA//x4NxXNpArvPc4A37Yb7WtYnT49rwFe+b0wXkEN/obnF9UD7Wg7aKcxw2RQ/4nsVZqGOq63papG2aQ2TrdB6K1u0snKbodlYGJSNtVRfARLy7jStZOfJpT9WBRdu4zv8pU4Vi9JP/+TqakerCQfHu6d3/dNFJzErTRWtv4Utjo/xYxvlYPqNMdj0ICCM67czu+v/senCa85WwXuRboXysB5kFN1YPlI4j8TlU6SvdF1u2noqhfNw2pYCs4F5lsohOR1GVn3U7gnHGF1Zu485gNPfrpfTBepBXclN0QGkXbeP6li9i5d/PE7mKFZfK8eecdscIUKi4b269cr/hY/BcfqtBxntd73TF8irHzAYoCwdmyRh8oFNhtwwCxfUhlKf1ILM8J+hBXBmx5BJGt02Z5bpgtOI6HWWxbkck8vwJup2XgWO1IVBcH6wHbbC3h03UgUXbuFajTAIwsjLUxU6+l8udIvdYQczEYBCVXurzg/Lp+zsA8qes0mWferxqB17gZrcMAkvog/VgeFmO0YP4vf9ieHbDU7htGo7ZQimW0OkoinU7IpHvj9Htmjr9Fl3R0KjDfdOJwBL6YD3ohL/1xVgdWLSNOzHKpHiMeH4IV6tkHYFxVi0K0BHtuoKFJwYQmFAhcKWXdn6jPPuW4rHh/U/FoYzthEDAC9w8W1a4RgjjpfTBejCwLMfogdLE70j8/g/MNT+68nLblA/XYjEX1Okok3U7IpHpj9HtBmnaRrePDVDaHhfUB+tBWwF0hI3VAaVbrI2D9ROjTGFPA/MdonUGR4WNAnRGvLIXrH3/UZiyWRDjjOciTnlA+5xRzEzZL0UY2DZRcCu+vHTbEM3CfXF9sB5MKqexehC//5MyP5PYbdMZgC70urhOR7ms2xGJUf5Y3R6V2RUnKq4P1oPRtWuKDizRxh3upqKpoFm2GGd00lc595+FSF4Wd4wWB27E0/0whr5DoXSdGEYKY3nAE11xiSN7nTg4hWf+kBuDl0r1TGEYeU3HLNjJZvuQnhk6KhUzFQ8Uxr6MN/Ijb3o87xQfGnEZA1P0z/+TOHcAABWSSURBVHRB86kuHDRPZLt9dfqb0GP50+96rmf5wruX8sFkkFMaRtWREfdEz/yhOHyyDKPOo3p7+wNu4Nf2Lonm24kIZOsD+aisPsqjrlM+f+nCUZcpy0/1Hp1oOutBQET4LKEHlEHRmTLJ4bapWcvX85yt0ypH2g70N856cgJr1QbJ53sdBxa/13NbO2LdDuUufJbQ7ZCbvQEIZOsDNFWObuNu+5VL9PXG9vOKt3GxftVGmSoGnZwp/zFGZ90uQSBg+iYJwuClc4EBc9LgKD4GAUYYa4WJ91rXQc+/6aJjSkN1YnQRJ7hH8k+M6pAGGjR4GCU0bGPdD0pfLcGUD4/8NxyGGLyRN7yfyKawLlcdxqC08Aat1Cj6Rs+ED3KiRV2EFvwwWADP4MfRqF0GHgfURGNYt3ZzIyDs+cZk60PIH2P6YeRF93REqGMMWPChbHPWA6EifJbSg/fKrtj3X3K4bWqr5SsIC2WTrdOKH9s4vrfodj0oqHsGzxiYq/W9RUTrtkARRkvpdksROKgLAZWL27gucA6HNfT1xvbzBrdxqgv0P4f2Kf+ojTIlppPTemJfN8ZHb6qRUtHo6igdRb6SB4yX2kgSNuzlYqar19CgHHRRmIwcctQ0o4tds2N6VTs+1FSeLocxhnEyygU+6BBHR1kjy7MQQB1I34fgdk/06GDHBh3emrwT1meEthO+HbX/UvTruqh7+Ip8tqUjbz6oduUQGKQPKjPq86vITnj+r54ZYEiN9xgl+taDWyTQx6X0oPr+xwKY2XfbNDOgM5IbpNNJvtUAHjqtq/pOy6c9eJHEabu1bt+isqRut5WDw9oRGKQP1H+RcRt3u0ppib7elH7eoDZOZUtdGOwqo0yJ6fTXxsNgKhMSKG+mbjfnxPcnGUxjsDA7cxJVYa1LGJOIX+r+/xQPw+xX+TnGFJWmauASOuktht6QWaw0LfdvxQdGZXSMaDLaGRvVrlmoGL/pY6RGuZgVazbI8NsMa9I4eU551D0fvefQiXyeJLgNQC7i9rpAD8PgbNyEECPAUc4k+O9bvd+kHkQJxP/s+iCazNyn9ZXZT9y5emY9EEjCrtZV3c+qB1UpZPyEfEfri9Iv3jZN5TnCIjqb1WnxnqPPiDq2jWNQhYEyyjfOlj1VvucGhq3bAkw4FdFt0aUfSLvbdFWHVO/bOpr0Ac59kw+Ks1l9AAzxn6MTg/RBNN3G3da0pfp6Wf28ZuVf8vmuKgWzA4xW1Uo+kgEs0IPo1CNfOXQUP6ei55BaVRzJ9UAMsWzuaEQffBTOn2zzcUs7nHr82ykeysrMDkbZZIM55EtZ//p3LsPuRKNpWLQZUtlEkZHI8lFIcKmxUhj4ETZm9ETJKrrIi/F7rqEn+rnGnjjwCs99y2uqeEN/RHeXehBxkHyj9EHpqu+SfDpvNHgPdV/Vm0h7iK+01CnrQTdoWXrQkrz6/jfDQ1mN0helvUjbNIXnVH7RsU53tHFgrIvvPQNm/9E9ehn3jKYwZt8HGtbtbsTO6rYwbDO6DgqPxkY0oLtz6XgjGtaHFn0QLm7jluvrndWBjupLcGsb1xN/1Ku7SsVHjI2JdP5TRyeKWR7CmdE417GNHaUpQqf5b/3+qQQ4meURjjRGGDc38s8ZsCzf4yP4s+L+g7S673NUGhq3NleNfolGbeRk5N9GpwpT2mhI1YYl9Hgp/xyfTbqMstUzbuEl9CNWzfhnnwN/1N+6EdF9H97wvojSnWV+nxFG64PKjW8UAxMs60V3DvL5PuFXz9wnznoQwBA+6FFpPeCbP3VQLym++tZtUw3FKm9G63SQppopUx2tOvwKqwfleqS1bgdwFtLtnqLwqwYCo/VBZek2rr0tb0B8+jhQD8b28wa3ceKra9b5VIi/Q/64q4R00uuOenyncGZz2Ltxdlo6pImjXFXHPNK5Yp+OUJdxwhpiOpXMNLU2REpLg0UnFMOEuCwBOjfiTMcI5W5zGHh1B1Y0aQiJX4Xpuc9gOfBecTHQmf2jvjCiBm9pZ6zayKnw2pFOVxcOMR48p3QIh9+2enmWnvJDtoP8JrYsf+uqz4OVjjzsshGYog/M7h4dCqDnR7pO6kfgxnogIBbWg6b+hqIY74l/yvekjBXutmk8rHOmnKLT1E8GeylfZsvoa5xrJ+Ddui0QhJXbOGrDutwUfXAb1yhL1fESfb0p/bxBbZz4b511boh58nj3JOTvADrhXLku54OaRYvCUMRqhFc+H+vamMgi0BGpFN1mdsqHpVZ92MWOBoXWNBwOSo9B9pf8iCmGxP/0zP+d9RU0OD3W1ebqyiga8MYHpJrlCs/Qp+PbZfhRHlwYiqR/r6t2CuPdmzpANyHeObokobLDX+UCLegdyZpDT3EehHTIQno+dp/pohHrMsj0qjJ4Z6lnEJvDBXnBAaN1Nj2At5K0oZ865TVaH5SW0SbqRrNeUrav03ySe+vBsnpw8j1IyqLELflx5boPuRFLxyupdyVpN3GZotMNWug3g30s1c9x1u1ldTunTEbHKVlnS9JuCjxFH5TWbdxyfT36EWP6eYu1cXdaKhcdfzqyuBvds3Tuu9vH3t/34W3due6N3fFSedEJZeQM4DBYHsGD/EmuFN2UKeXB/3/9rjCUDOze6TrqPOgZgyvKQ3wO8SDsgK/rnW7Bm6nw6JhRw32r9xwZ3FUerxQHo6TNfa9ARh7oIPNP8OmyPjotGEa8P+JXYdFhSFIelA980CnmREjqS9Xpll8vZdS7g55z6BIV3oiP/MgWjadovPKa9zn02CzOiZXQpByoS5WBp7A+ZSROrPe6vawTr0X0AKlK0k5RUz5T9aGqa6JJ3WQWlvpBfUNHoE19aHPWA30/hE9xPVAe8XvRVRZt5TMqTHldtG0axXSSSPxfvU4ncFS3woQ2Y8iAk3V7Id1ultXcz9aHui2m/+Q2Lqlgqhul+nqD+3niZbE2roLg48ePhzmuf/3rXw90fdT17Vh6SntP1w/N9Ar7TtfPzfDc51J0c/NfMp5kfafrwZg8le5rsBqTti/NULqK/4Ou37toDqXXRSeGi97nut7F50v74qWIHiBXSdqXxi3Nn/LUZT0Y8H0XXoP1AIx1fdT1XYr/mu4THke3TVPlEQ/W6Za6GMrm6yH4Ko11uwXLPgyF2WDdTukpPX2D2XRctKwPA8swLQ/uhaH1YACGwmuUDijdom3cyUxZYqwOupU1GWchmsuMhtBhVoNZmGiZxrTM0HCKXtcsUIzX5Zei25XfJcOZdTta9jeAGQ58KTHi3UlX+TH7wexi5XRP2TNy9OI2pPW3k15r7POBzKqB21pcyfpakvZa8IMP68Hw0hijB5+HbBjpXaXTN2WOtmmqbCX1riTtqXIfpVdZMMP9YxLIjO7RCovkXdetdbsLme7wMbqdUqNfMGffoGSdLUk7xeTS99aDYSUwVgcWbeNmM8oCNjTMbMAf61iW9Fof6SPlD8+EMfU4xpWiO4aXommEFQYs+8ViRcrKT/HvKWI8rCUrTU6kDLrs9XqV0Hqp+5+UrrWhzqCXkDp/K3rgBF7gthZXsr6WpL0W/A6hPK0HmSUyQQ/idyYaPpk5Lh5tats0leGSeleS9lS5m+mfKqBajq86xyDr0T7kZuS2Z+t2GyrdYRN0uyYqGiwxnbONLFlnS9KuMbn0jfUgvwQm6sCibdzdfLGyYtIwjzWcDmeU/r1odx1i0ctcKbq9mV72JXuy2LfGCYa5jhnKep9ZbqKMeOfoMnpxX3mzl+wLXewbOdpL1sjjHL1G9LOPjNqOnVk8S3xMhJL1tSTtMbIWTmM9yAd4rB5U32TVq9XOlAUIJrVN+TC2xyypdyVpt0szKZQVEOxd5nv/4QzvfRlZt/vQOX43VrePqcz4dKbcR/f1YLEk7RkhmIuU9SAPySk6sGgb9wlrU+dyUgaWnSH8p7o/mu3KzSPQYAlkTP9GYb/oglFGa4YYGnW2pejWGazsRvJi3bPks4ShtTJpx7EjbOgYULdW16EUT+jS7HoAUiVpQ39NTrJaD84UiDAarQdKy/H0b+WP+i6fYW221+Jvcts0lZnAg3V6KpAhvfC0bp/BUhiN1u0zpCe/tj5MhrAiYD3ox3GqDij9om3c3DNlbwM8zJa1Lj/rg0/Cc/od/11Sz1zo/kYXDSruqPOscJY/xJMMn+iZY9D5UJOmnmrXfTZdxWUZH/kxa8NJhykd3r1UGKMTq3biEaxskPWUkjBaJT7iK6u+Kt7guppLG9gS+jwyWsSx1egXS5Bw1YDJ7e06fyWD9eBM0QijUXqgdNQF6iD1de1uUts0VThhlaXTMR/Fz2rbiD+EtuLGbwZJN6nTMI6TLNbtWyg6f4XRKN3uJDjTC/GVpQ+KF+trdn8slzaiJPR53KQ+SAbrAaXX4YTPaB1Q2sXbuDsdcowKlgAsEfmgK3basukobdWwy68NMhLrmaVsMax5IMRLvWNmDgOQAyPY+IifGlKD6Co9R29TiKSDXuq+0UP1p41poO+NwFwIqO4Nqa+D6upA2oiELv0n6AN7P9C3Gz2z5JTGsqkfCrK7IgTiUvXBA3BLY6Q6O7ptmsqr8h6i0wfFR7fQtd62Db6G0lYS6zTA2V0MgYF11m3cxUrKGQuBxdu4uWfKKMXXujBesp2UlJkphO86uZFGCgft6O7r5kulxQisnO7pJDKaX7mhdBU/3XjMchzWNqeOsL79Tmlc3xuBQQgMqa9D6+oQ2jAd4qdGF3rGgETUL/Qvfa9HuytDgO8hKxsYqd2CG9w2TRVqqN6F/M62bcQbSjvET3XWOj21gJ1+EAJD6qziDuqPDaEN0yG+9WFQCV5d5MXbuBJGGcsJOYzhRleuAcPIO5t+Gc1sc0whsvcnNcDqjoDC7+n9c10v0jh6HkqXDkbkAcOSTcmpw3BshqXvfW8EpiCQXV9VT4fW1WzaQQD2CdU6pjAGTFgeXOmg/NUv4Z1SEE6bhQBGOvVqK25M2zRVtqF6d0j1TvddbRt8DaVtnZ5amk4/FYHsOose6BrSH8umHYSwPkwtzf2nX7yNm3X5IuUjJcIQozOX1WlTfBodjK5WA07vMYRwLOU4cXpPWozA73VVHUYi6X4w3ZhePnmSPl0GyagNYa18KtzOCIxGYGh9HVJXh9JGCKWJjWGUiUGKV/HB/nUjoPoR9/nW38i1IyKeB7VNU+VRfoPboDRPpW9t24gzhrbSWKdTgH2/KAJD66zif4BB+Wf7Y0NpB7rWh0VrwLYyU526SBs3u1EWYGdKGEOJRumcY6kGjj0rbY7RD0boT4whhaGsN/LZA1a5JM/RdEUIg7KeFbilfCCvvtm8EM2eERiFwNj6mlNXx9KuBAl6hi7Xe4fQs0TXRgnsRJtGgO/y0eqFjUgzpG2aKtJovQs619W2wddo2iQO9K3TgGG3FAJj66zbuKVKyPmkCFykjStilOmDz+gpoxwsKex1isusGnFPnN4xdYgxdDLrFt7RMWyO1LJB+qDwUXRJK8cIZbp0izDvJwMFuyIITKivZ+vqUNqKj179qgvdw3HQDgMSqU6wAbtVb6sU/tktAqFeUO9otDblxHt22zRVsKAvrTqid6PbNvgaSlvxrdNTC9TpJyEwtM4mmbmNS8DwbXkEVFfp+1ykjbtbUDwa7B8lXHOfV1uWxOVKZ7we6BkD62FQZt3eOj3zjo4is1n4nG71mS4autSAG0RXaaOj8xlHdQ7KgwLiIi87I1AKgTH1NbeuDqEd6ztLgu9J2PepwEEfuma206i+3ycC1CVmyVIjfUuSwn9u2zRVriF6dxCmuW0bfA2hbZ2eWpJOPwcCQ+pszM9tXETC/lIIUE8v0sbN+ufRTbTUwHCEPX/4jIC9TnEwqJ7qSjuAR/vEIgHF5VjfimZIh/GG4hL/aJljeJ9FN6FPRzTS/Ev3/EdG9d9lorfVjkgUz/6KERhaXxU/u67m0g40Web1Dqj0zLH46Cezxej0ez3XSxn1bHclCKjc6dwzCPap7ltngbYAhXjPbpumyqO8irRt8JVLW/H4Tlinpxam009GILfOxoxC3c3qj+XStj5EdO03EVDduGgbV9ooY9Tvv7pOZruaQKz5WYVEY3Yjv+vI/jWzb96uCAHX1Ssq7AuIqvqFoc7g16aNcvG/i7bpAlXAWRqBiyLgNu6i8O8+80u3cXdKIizhON3mha7WkxNL5j2WNgqvi1HUyumeEUZmyZDDzgisBgHX1dUUxVUwQn2ToCwZ37RBRmFJhs21TVdRySykEUgQ4Jujy/2xBBPflkOA+ibqF23jihplQCch2SfGIQEIuwXHUpNXCaNMm/8k/jffEUlk8u0+EHBd3Uc5rl4Kff+qPUny0z27q+e7j0HJsrW2qU8cvzMCe0TAbdweS3WFMq2ljSu6fDHFXQIz2sGhH6s2bsQfHwEO+WCGjL1kPyvsaJ+awuyMwMURcF29eBFcBQOqZyz1Y3DqS91vdh9ZV2FJpk20TV38O9wI7BUBt3F7Ldl1ybWmNm4xo4wikOBsEGc/AktH7IyAETACRmDFCOhbzeAU+4J3aZBF6N02RSTsGwEjYASuB4G1tXGLGmXXU8yW1AgYASNgBIyAETACRsAIGAEjkIdA8T1leWw4lhEwAkbACBgBI2AEjIARMAJG4DoRuJuKrWm8eBjHXwpnPxUn3/h/uVKQfG8EjIARMAJGwAgYASNgBIyAEZgRgXr5ooyvo83OYZ0lYV/ZMJsRcZMyAkbACBgBI2AEjIARMAJGwAgkCFTLF2V08T9c9+TXJyPqnlO2eN7Mf4wlcvnWCBgBI2AEjIARMAJGwAgYASOwCQTinjL+e6btRMQ3Cr+RgcYJXHZGwAgYASNgBIyAETACRsAIGAEjMDMC0Sjjj0Hft9CO+8l4b2cEjIARMAJGwAgYASNgBIyAETACMyNwJ3MWjD9TtjMCRsAIGAEjYASMgBEwAkbACBiBmRFgpiwaXOwh63JevtiFjMONgBEwAkbACBgBI2AEjIARMAITEIjLF8+R+OxcBL83AkbACBgBI2AEjIARMAJGwAgYgeEIYJS17SWLlOIsGv9bZmcEjIARMAJGwAgYASNgBIyAETACMyPAnrK4bLFtiWIMiwd+zJy9yRkBI2AEjIARMAJGwAgYASNgBK4bgbh88TfB8HkLFHGmjPd2RsAIGAEjYASMgBEwAkbACBgBIzAzAtEo+1l0H7XQfqiwP5LZtJYoDjICRsAIGAEjYASMgBEwAkbACBiBsQhURpmMrp9E4L38ryMh3bN08Rtdz2KYfSNgBIyAETACRsAIGAEjYASMgBGYF4FPPn78WFEMRtgPemCPGQd7PNb1QuF/yLczAkbACBgBI2AEjIARMAJGwAgYgQII/D+oNALHBPZWoAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂z ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Az(t, x, y, z))⎟ - 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z\n", " ∂y ∂x ⎠ ⎝ ∂z ∂x ∂y ∂x \n", "\n", " ⎞ \n", " ⎟ \n", "))⎟ = 0\n", " ⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABG8AAAAnCAYAAACxF2XjAAAXOUlEQVR4nO2dedgdVX3HP28WEwhLTCASEAwqhkVoIFSQJSRIYx76YLUoCEgJggsg+1IgLC9ooBKWBKG08lADFkpRiuBW4RFS9mKDYUli0cgLBMKiJRiWkADpH98Z733vMjNnljtn7v19nud9Jrl3zpkzc7+/3/zmzO+c09ff349hGIZhGIZhGIZhGIbhJ0PKbkAEw8puALAlsABYAjwG/G2prTGMwZg+DYChZTfAY8xGDN8xjRpVJGuMbro3fMc02t1UNnbu8zTz5gvA88CDJbdjPDAOGe04YCEwEXizzEYZRoDp0wAYBZwEzC65HXkzDhgJPJuhDrMRw3dMo93NWOTHni+7ITmSR4xuujd8xzTa3VQ2dvYx82Y/YBvK77gBWIGMFuBl4FVgk/KaYxiDMH0aAG8ATwKnlN2QHBkHnAu8kLEesxHDd0yj3c2rwNmoE6cbyCtGN90bvmMa7W4qGzv71nmzOTALuKSk44+I+G5XYDjwXIfaYhiNmD6NdtyONLBH2Q3JgWHAPwEXAu84lIuyDzAbMcrHNNp7vAdcBFwD9JXclqxkidEtfjF8xzTae1Qydvat8+YK4HLcAva8WAKsBpbTPK5xLHADcBSwrsPtMgwwfRrxnIUeEIaX3ZCMnAHcBbziUCbKPsBsxCgf02jv8jzwCErRrzJpY3SLXwzfMY32LpWLnX3qvNkd2AH4cUnHnwGsD8wBbgQ+GHw+ArgNuBg/hnIZvYnp04jjGZTie3zZDcnAlsARwHWO5drZB5iNGH5gGu1trgKORdkrVSRLjG7xi+E7ptHepXKxs0+dN2cC/1Li8Z8F3gLmobS4/VGK63zgbuD7pbXMMEyfRjKuAk5HE2RWkTOAm4A1juVa2QeYjRj+YBrtbVaj3/fsshuSkiwxusUvhu+YRnubSsXOvnTebAUcANxc0vF3AxYBTwNfAf6A0uT2BA4GPht8vwjYsYT2uXADmlhrVNkNqRCTUSrkUWU3pA2mz97GRZ+PAK8DhxXaomJ4P3AkcL1juXb2AWYjvUJVfTj4o1HTXTpctHcD8nHjCm1R/mSJ0S1+6W18983gv0ZNd+no2ti56M6bw9GFWwccHbHfF4EnyL6ySBqGohvS94GdgenATsBLwP3oGk2q+3si4/E2QGMq1wE/ylhXI7sCXwL+Ac2i3cgpwXEPzfm4VWch+i2+hX4fn+i0PkOK0KnpMx2u+vwZ8r2+kPQ+cCAKngYc6o6yD+guH2720Z6q+nAo1o8nxXxzely0NwAsRtfaB4qO0XslfjH7aI/PvhnK02hSzDenp4qx8wdRhuMLwNvonjEXvdz8M0V23mwJfAf1ZMXxOWBBgW2JYk9gPEqVWwn0o97Nogy0H9gCGdsuOdd9EfAnNPFSK8LjLcz5uN3AxcBmwAllN6SBTuszpJ/8dWr6TI+LPu8G9gY+UGiLkuFyHzgYuNOx/jLso59yfLjZRzTmw9Njvjkbrv7ZhwetTsTovRK/mH1E46tvBv/9s/nmbFQpdv4I+h2PRJlAVwC/B04EHqKWrVtY500f8D3gj2jJ1yjWQ6lNjxXUljg2QxcnnD1/Bhr7WIQhbI8E9J/A4+jmuUlOdX8M2A+4BY3bbMVkdKP+bU7H7CYeAX4DfA31xKdhJgoWpubTJKCz+gwpQqemz2y46HMh8u1Tim5UDC73gfcBewGPOh6j0/ZRpg83+4jGfHg6zDdnx0V7D6AHrrEx+7VjJtk12qkYvVfiF7OPaHz1zeC3fzbfnJ0qxc7/iIbUnoCG6p0J7Is6cSYCs8Mdi+q8OSE44JG0TvOqZ1e0PNfigtoSxxOo13UssC0wC00o914Bx7oK3TRPQTcVUJpeI6ciJ3Vqm3omonSqe+s++3JQ97+32P/bQX3botSxd6mlyrqm794ZlGtcSi+c2GsdSu9zIc35JuUBaufa6u+/6va9GY3t3i/FcYqik/oMSapTl2tr+mxNEfpcjt4g7ZmiPXnich+YjCaKezxmv0Y6bR9l+HDf7QOqZyOdpAwfPgW4A63ctiNwH7LBXwOfbNjXfHNrXHQHybX3JDrnvVK0KS86FaN3e/ySp31Ad9uIj74ZOq9R883CR99cZuz8YTRkbwC4uuG785FGDieY92hYAQ3YDv3I89CPsm/M/hOD7fMFtCUJS1Fv1qNohZPT0TJxeXMoMA24MjhmmJK3C3BXw773B9vd29T1HdSD+I26z/ZDxvtwi/0XoklAj0BL3dUfr1HkcZyOrtW3gNuDYwJcGtR/LeotdCHN+SblNpqvLyho2Qq4p+6zB4LtXwG/SHGsIuiUPkNcdOpybU2frSlKnwPorU1ZuN4HwkkAn3E8Tiftoywf7rt9QDVtpFN02od/Ez2ArADORb/zBsB/oKD+FyjuWhHsb765NS66g+TaG0A62Aldh07TyRi92+OXPO0DuttGfPTN0FmNmm+u4aNvhvJi59AP30lzx+EqdA7T0fX8Zd6dN8PQpE/Pknw5xA+jnrIXc26LC5cGf0WxITAHpaj2B5+FbwRajcd9FKXI7dbiuy8gAV5ZV8coNJHWUlq/RbkFGI2M8Hrgu27NH8Rj6Dc+AvUCzke/9SnBcb6eok7X83Wh1e86Bxn4fODCus9/FWzLHm7SSNH6DHHVadJra/psT1H6XIF8axmkuQ98BGnjTymO1wn7KNOH+24fUE0b6SSd8uGHA+eg7I5p6PfYGv3GFyMd/w16UJiD+eYoXHQHybW3Dk2GWoZ/LiNG7+b4JU/7gO62EV99M3RGo+aba/jqmyF57HwSuv5JWUT05OlhJ/lTbb7/Leq8+RgFdN6ch9IT96L9+LxGxgb7vhu3Y4W5ANgc9TC+GnwWvhFolc65FoltSlAunOF/FHA5WjLuvLr9t0A9mCtoT3jzcp1TohXnoMlF+1Gv8WzUm3k46VINXc83LX0oHe2YYHs8CkpCXgNWIwfQi7jqtJ6oa2v6TEae+lxJ+jkVspLmPjCemuZ8pGwf7rN9QDVtpNsYhh4C1gCHoOVu9wm+C9+C/gQ9IEwI/m++ORlxugM37b0StLfTdHOMXlb8kqd9QPfaiPlm883gv29eSbLY+STgQ0kbiTrYfhTx/cbB9rU234efj4bmOW8GiB5H1vj3r3VlP4F66i5DsyInZRS6qHFkaVuZ7IDEtJjBE8O9gN4QfBTYqEW5MM2rPuXsPLSM2N8z+AcOhRb18LMLMqY8ZlBfjpYu+xBKfXsQjZVck6FOl/NNw1DUI3sMcAm6wTcaOMD/kWxyuwGaNfe94Lt7Wnw3P23DO0RanUL8tTV9xpO3PleTbGnEAfL1q0XfB8rABx/uu31A9WxkgO7y4fuigP/n6O0uaC6pdeitH9SC8PDB3XxzPEl1B8m19xbB3AUxDJCfRrvRN4eUGb/kaR/Q3TZivtl8s+++OWnsPAF1HCX9m5mgzij6gu06aJ7zZhluTjrsSQtTMZ9C4/hcGEayHv20bSubq9E5nkzzeT6BZk6fRPOkTaHod0PjIbcN6ngI9eDVExr7yDZtGIbmlFiCJojKg1fq/n0U8GbG+lzO15XhwE3A51Gv8gUR+65HsjdSc2lOmZuEes6vRzefehYlqLNM0uo0ybU1fUZThD7fCeqNI0+/muU+MJLsnQdFUbYPr4J9QPVsZC7d5cP3DrY/rftsZ5RuvSr4//hgG65MYr45GhfdQXLtraH2pjWKueSj0U7E6GVSVvxShH1A99qI+eYa5puzUZRvTho7503YkdXuvrBR/X6NnTefSnnQDahN8NPuQeDa4G8eSjcKeQsYkeAYadsG7XviiqQPjV0MU+PujNh3F5pvKg+idoc9llehXsbjaD6fl4Ntu1Sv7ZEDyCut8xA05vBFtMzeiajnMwsu5+vCSOCHwF8Dp6G3Tu0Ygm4YTyeod26Lz2aim8t8YEHiFpajT6j15KbVadJra/psT1H6XI/4VUQgm19tJMt9YDVaLrwVZdqHDz68CvYB1bORuS0+m4m7Dy9Ln/X0oXmjoDY3ydbA+9GSySFTg+2CYGu+uT0uugM37Y0g+UNsIzNx12iRMXovxy952wd0r430WnwdYr65Wr45aex8EvnOefO/wbbdZMnbBNunIL/Vpt4Grmvz3S6oh/H+oHGN6Zqr0MUqkr74XXJnIzSB0lr0xqOVUCegh6dW43FfRRNV7Ypm0P8UcA1aTq6RFajHdGKL70A91rQp68r+qMd0MUoFvBc4Gt3wf5OhXpfzTcootCTfNODYoL4oJiKtLMpwzDSUoc+QtDp1ubamz9YUqc+RwOsZ2paGLPeBN2j/hqks+/DFh08Ktj7bB1TPRvKiTP/divWD7eRgGwb326Lf/D5qgaL55ta46g7c/fMrsXvlR5Exei/HL5OCbR72Ad1tI70YXzdivrkavjlJ7HwS+c55c0+wnY46m+rnGdoQLV/+FsHKY41z3qTlLfRDt/q7I9jn+uD/jevVP4dSlMbk1BZfuBD1Xl6B0s9aXZtw6bVWM+GDbqbrA/+MJrg6p81+65CxbYLG9jYS9txGreQyP6hnZsQ+e6HezuVIYK+gFNxhaOnJtPWGJD3fJPVujN7C7BPsk8TAw97heyL36i7S6NT12mbV53ySacj0WWNTtKJIJ8lyH3gBtdknfPHhVfHfkPx8k9RbRR+eJIu4iLKgFUNAk07C4MksJ6Df/h0GZ1VY7NBMGt2Bm/bG0Nmh/d0ao5cdv+RlH+BuI0nrDSnbRsr2zZDex5pvdq83pGzdQTGx8wTynfNmGTq3CSgzqZ4LUKfVDQRZQXll3mRhWbDdAk0oVDQjSDc+sF25S4HtUPpWyI7o4j9H85Jl9TyJxuduR+vxeA8AX0UprycTfX1uBQ4EPg38ruG7hcF2NvBx9OMvBn5Qt0/YkfdOm/r/As2G/hpa4i2cAf2HwP+gdMa9Uc9xPXH11uNyvnH13gTsATyCln3rb7HPxQz+Taej3+P2BG0tirT6jCubp07TXNss+kyiIdPnYDYP6q4Ky5B+xxB9XYuwD999eFX8NyQ/3yT1Vs2HL0E6eB44AY3x70TZkOvQNf8ccBewZfD514EZ6AH8EJrT7C12GEwa3YGb9sZTi319xyVG77X4JQ/7gHQ2UpRvTlJ31XwzpPex5pt7yzeXGTsfi4aaXYmylJai+YKmoeFSs8Id88q8yUJ92ljRLEHjfZejWbTzKPeXSOT1hJOnnUj02LnVaHKqocBOLb4Px+f9ivYpryG3Ai8Bf9fiu3vRTPxvBNvzqaXcheyI0mN/SjMfRUvGrUNOpDHoOCvYzmlRNqreRlzON6reIWh5OtAKC+e3+DuGwQa+MfBZ5MieS9DWIkirzyRl89Sp67WFbPqM05DpczBDUXCwKGY/n3g82LZLEYbi7MN3H14V/w3Jzzeu3ir68BnoDeMc4Ea0okbImbReve38mLLLgVMajjMJnff2DZ//Ac2b8HPgk9RsaRq6zpNp/eBhsUONNLoDN+19AHVU5LU6UdEkjdF7MX7Jah+Q3kaK8s1xdVfRN0N7H2u+2XxzSNmx8zI0xGw+6rQ5Fc2XdCXSzR/DHfv6+/s737xmnkPLwOWx5nsUW6GUsK+idLBtkAGeiXrrGulH6Uqtyr2EjKZ+Vuonkfjy4g70pmF3JPw4zgIuQil5v3Y4zmgkisuAM9yamGu9Sc/Xtd4kHI8MZArNvcydop0+lwOXB38hk4D/RuO4l0SUHU7xOk1KGn2Ophhtpqm7KvrcAf3GuyONVIHhwEqUNnxtm33S+u92ZbvFh4/GD/8Nyc43Tb1J8MGHhzyFsgW+G/x/QwYvDX0mSqHfm+Y3qvVlf4DeQh5S9/096A3rNyKOvzXwe+Df0FwDcVjskA0X7X0aPcRtSl0w7jlJYnSLX5oZjR/2AdWJXzpBvY813+yGa71V8s2ViZ19yLwB+Bm1pdSK5FmU1j4P3Yz2Dz6/GqWxhn/z0IzbN0aUexeNFQT1kI2n1iuYB4cCB6AxfUmCftC432eJTiFtxd5owrfL43YssF6X8827veshB3kr5d5Y2unzIfTmqZ4r0EPukpiyRevUhTT6LEqbrnVXSZ+7otTUhXE7esRaFPjsFbFPWv/drmy3+HAf/DckP98i2lu2D98Nva17GvgKetNav0rIKqTJF4EvAwehN7G/iynb6PsPRKnu5xNNODlr0mDfYof0uGpvMvq9q9JxA8lidItfmvHBPqBa8UsRRPlY883F1Vs131yZ2NmXzpsbUUrQqLgdM5C38b6HxsatQqJ8Ec2snYWtUK/vtegtx2LceiBXA4ej9FKXa/ljNMP2i3E7OhJXb9rzzbu9E1BP+mk51ZeGLDeJqLJF6DQtafRZlDaT1F1Vfc6gNgFelbiJ9kuXp/XfUWW7xYeX5b8h3fkW0d4JlOfDhwI3o9Vudkbj63dCmV2NzELzdExFq4rElX0YpU2PQUNtLkFBfNyDv+sDgsUO6ZmAm/am0zwpsO/ExegWv7Smar45ad0uTKDc+DqpfzbfnE+9vugOujh29qXz5j401uszBdVflPHujGYRX5dTO2eg9P/Po4mVpgNvOtZxLxoqEDUG2BfyON88WIqGWAyUcGzIdpNIou28dZoF06c7Lvp8H0rLn19ccwrjNtT+PRo+T+u/k5Q1H56NKtpI3uxJLeNrZdCOUTTPaXIumqByH5R+n6TsQmANeiN4MnozeXWCNoUPCIsczsN0lw4X7Y1B8zXcVGB7iiAqRrf4xU98sZGy4+sk/tl8c374ojvo4tjZlzlvQBMyHYYuXt5MQUtwbYB61MJxbZ+glsp1LhpvO43aG9u4crcDz6AZyA0jLXE6G4GWAzwAjXudicZ8r01QFkynvcRBaIxvJ4ahFsEs9Obma3WfpfXfScqabRhZOQgFiOEklaciPW2NMgdAc4UcjfS5zLHsw0irR6A09J/kfwpGhzgeZZp8qeyGpKBdjG7xi+EzcT7WfLMBFYudfcm8AaVljqOYicg2QxNEhalQM9AYwnBc23koXXMqgwP/uHI7UlslxTDSEqezt1GK5QHA2SgFcG3CsmA67SWOo/XyiVVhHrAvuheEpPXfScqabRhZeQK9oR2LVuSZhfx0GODPQkH/F9Gb082Cv5EJyoKGnRwXbO3hoLoMQQ+Js8tuSEraxegWvxg+E+VjzTcbIZWKnYeV3YA63kVrnF+A+zKDcdQb4abICI9nsPF+hprxgtLkosqBbsY7oTG5bwZlDMOVOJ2Bbg4nAncx+CaRpKzptDeYCqwAfllyO7LwOhovfS7SMaT336tjyoLZhpGdpeiB/FGURn86tcmy+9B4/42ABxrK7Ysm6W5XNmQR0mvjsrRGtTgYLc27tOyGpKRdjG7xi+Ez7fyz+WYjZCoVi519GjYV0g88gma3z5PT0E1hDVqK8DpkvCuR8TYSGm+rciGHAd9GN5VrUM+dYaQhSmegtMzr0ER/ix3Lmk67n+FozpiZaMLHqnM1mvBuUfD/tP67XdkQsw3Dd+5C8zCYNqvLRsAN6A3/6pLbkpV+mmN0i1+MXsR8c/WpZOzsY+fNEOAqdIN4udymGIY32E3CiOKbaDnERSW3Iy9GoCUyT6cak/QZRp4MQZkIR6EH2+0pb5UdIxt9wBxgLrC83KbkQpoY3eIXo1sw39xdVDJ29mnYVMh7aObubbHOG6O3qb9JfBxNqGUYjWwI3ELz6jZV5m2U0rwx1nlj9B5TgLvRqmkHYg8HVWY0cBlKy+8GksboFr8Y3Yj55u6hsrGzj503oMD9sbIbYRglYzcJIwmrqODNJwGvB3+G0WsswK8FJYz0dON9O0mMbvGL0Y0swHxzt1DZ2NnXzhvDMOwmYRiGYRhG9ViAxS+GYRi5Y47VMAzDMAzDMAzDMAzDY6zzxjAMwzAMwzAMwzAMw2Os88YwDMMwDMMwDMMwDMNjrPPGMAzDMAzDMAzDMAzDY/4fHXWZveD5X4MAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ay(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z\n", " ⎝ ∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAAjCAYAAABLngW3AAAUOklEQVR4nO2de9QdVXnGfyFBwCAJRltALl+kkoANhEANcg0gIYtqS+sFQVOCeClUIHKRGBQC5VIbEIIiLZaagFhKpRZaKuCq0AjYhYVELomiSATkjlxSEcMl/eOZ8cw338ycPTN7vtnnnPe31lmTnJm9Z5+Z531mf3v2ZcyiRYswDMMwDMMwDMMwDMMw/LBB2wXIYVsPeWwD3AqsAn4E/LmHPA3DF6ZPA2AS8Ia2C+GZuv5tsWGEjmm0vzFfzsZ0b4SM6bO/6VlfDrGxZSbwPg/5vAqcAOwEHAQsAd7oIV/D8IHp0wBYB5wLjG27IJ7w4d8WG0bomEb7G/PlbEz3RsiYPvubnvXl0Bpb3gZ8GrjEQ16Po5ZNgKeA54C3eMjXMHxg+jQA1gLXAotaLocPfPm3xYYROqbR/sZ8ORvTvREyps/+pmd9ObTGlsuAsyqk26jL/t2BDYFHKuRtGHUxfRpF/ADYCpjVcjnq0oR/W2wYIWAaHTzMl4sx3RttY748ePSkL4fU2PJ+4FngpyXTrQJeBh4le3zeJOAK4GhgfZ0CGkYFTJ+GC2cBFwHjWi5HVZrwb4sNIwRMo4OL+bLVW4wwMV8eXHrOl0NqbPkC8NUK6eagMXmLgauArRP7NgK+DZwH3FG3gIZRAdOn4cIvgJ8Ac9suSEV8+7fFhhEKptHBxXzZ6i1GmJgvDy4958uhNLYcCGwC/E+FtA8Dv0ETIT0CHBJ9PwZYCnwPuLJ+EQ2jEqZPw5UrgVPbLkQFfPu3xYYREqbRwcZ82eotRniYLw82PeXLoTS2fBS4oUK6mcBK4CHgE8AzqPsYwF7AYcCh0TErgWm1Stk8V6BJnca3XZAeYjfUTfDotguSQT/p07RZjTL6vAm9ndmz0RL5x7d/91psgMVHVUL2b+gNjZr2ymO+nI/VWwzz5fqY9srTt77cdGPLXHTh1gMfzzlmLAqM75XMeyxwNWrd2hWYDewMPBntvw39vumJz70lz5FmUzQ+cD3wbzXzSrM7ejj+DfDr1L4To3Me4fmc/cBd6F6cje5PKLShT2hGo0XaBNNnEWX0+QrSxWENl8mVtvy7l2IDLD7qEKp/QzsaLYtprxrmy/nprN5imC/Xw7RXjV7z5a2BfwQeA34LrEFzyWyePrDJxpZtgC8D/9fluF2AiagFsgx7AVuiLmTPo6WgxtNsYC1Cy+itB2Z4zvtc4EXg0ox98bnu8nzOfuE8YAvg+LYLkqANfUIzGi3SJpg+u1FGnz8EDmi2OE6Yf7tj8VGPEP0b2vPwMpj2qmO+PBKrtxgx5svVMe1Vp1d8eXt0/44C7gQuBH4OnIBWTJqUPLipxpYxwNfRLOh/1+XYdyNRPlryHFugH/Zq9P85aAxfU+LdCd38G4F70EPP1/rtOwDvAa5BYxDT7IYermVnlB8U7gR+DHwKtXqHwGjrE5rRaDdtgumzG2X0eR/wTlRRLss8VFmdVSFtEvNvdyw+6lPXv+fhR/dp2vDwMpj26jFavuyLfvRlsHpLqJgvV8O0V49e8eWvAr+HvOtQYAFq+LkQmAKckzy4qcaW46OTHkV2F6okU4BfVjjHvah1cxIwFTgNWAi8XiEvF76CHnYnogcCqAtbFjcjk0kvRxZP3rQedS+L+Vi0759Tx38xOnYq6lL1Gp3uox8tWf6yZXLlpCjtSTn7p6DuVcsr5H07nd+b9fnvxLFXA9sikwuB0dYnlNOo67XN0yaEr89QtAnu+lyDfvM7KpTJF4Ps3768Gyw+moiP0aQND98XuB44Es018H0UgyvQH9BJTHvZNFFvWIP5clNYvWU4ocQGmC/HmC8L82XxdjR8bQ1wSWrfGUgbc0nM19PEGtU7ohu8BN2Qbl18JgNPVDjPatRydDewDjgFLf/VBEcA+wMXR+eNu6vNAL6bcfwpUbnOBq5DAQVwPgrWr6FWsJj3RMekZ42/C1gWpbkjda60KXajbJlcuS3a7pGz/8uodfLTFfL+NtnX9ygUiLckvrs92h6EJk5qm9HUJ5TXqOu1zdMmhK/PULQJ7vp8PNpORl0kR5tB929f3g0WH03Ex2gy2h7+1+gPh8fRkr3XoQr5v6KK+E2osht7hGkvmybqDebLzWD1lpGEEhtgvgzmy0nMl0XsvzczspFvLSr/bHQd/wv8N7aMQ5MWPYxaGl3YHHiu4vnOjz5N8ia0jvuzaGwgdFrf88aW/ghdhyNR69ZSdD1ORF3L/jJx7Hg0idNqRr6tuAZ1jzoSBehlFX9D2TKV4W7UVW5mxr4PomC5mM41K0PWvV2MAnMpcFbi+zjQ9q1wnqYYDX1CNY26XNsibUL4+gxFm+Cuzxej7YgJtkYB829/3g0WH2l8xMdoM1oePhf4POoWvT+6J5PRPT4P6fhPUeV+Maa9IpqoN5gv+8fqLdmEEhtgvmy+3KHXfXk+5YYbrSR/su4p0faBnP0/RY0tO9BQY8vpqPvf3uSPVUsznk7rVIicCWyFWvLih1fc+p7X1REUoIehh8imqCX2JhQUyZawt6GWwrxrED907i5Z7jplKsMrKDD2Rdfpsej78cCX0NJnp1cucYcxqLvWMdH2ONT1LOYF4GUUuINGVY3G5F3bbtqEsPUZijbBXZ+xb7axXKD5t/Dl3WDxAX7jox8Zhyru64DD0TKm+0X74jeN/4Eq9UPR/017bviqN5gv+8fqLdmEEhtgvmy+LPrBl+cD25Uo4zLyG1smRNsXcvbH30+Mv0jP2bKG4jFV6c83EmnfhVrVLkAz8bqSDu6QeCcSwf0Mn5DsMdQa/wfAZjlpH0VLQG2Hul7dgcbWrUsdF89YnPcWYgYKAB8zbbuWqSxxl69k17PT0bJYp5IvSFfGopbPY4C/RQ/nLN38CreJ1dZQXeehUUejUHxtu2kTwtdnKNoEN33GntzNF9cwUqdfj/bdkrFvaZf8zL87+PJusPjwHR9r8Kv7EDgAVdK/g96ggiZQXE9nNZm44hxXLk173fFZb3D1ZfBbv+hHXwart3QjlNgA82Xz5f7w5SHUyOP6meeQZx5j0uVK92x5ELUmuRK3esXdHB9AY9rK8BKwcck0o8Ul6Ld9hs54uJh70Szb08mfLOjpxL+PRr81TRykWddgHJqMaRWalMgHLmUqSxycM9E4xqnomv0AtQ7WYUPgm8AHUOvtmQXHboLbm5+qOg+ROhrtdm2LtAm9oc9QtAlu+oyvdbelPS9iZJfI6egtyzJU+UmysiAv8++R1PVusPhoIj4uwp/uQ2GfaHtD4rtdUVfktdH/t4y28eoVpr1ifNcbXH0Z/NUv+tWXweot3QglNsB82Xy5P3zZJ3GD04Sc/ZuljhvR2HJgxRNvisYmQf5D5mvRZwnqzhPzLPnjrdpqnR+DxuDFXcZuLjh2BtkPhMPRGLUn0FJlJ6CWvDRPRdtJGft2QmLy0d2sTJnKcge6V3FL6FdQ6+VfUe8ebgx8C/hj4GT0diePDZDZP+SQb1Wdp2nz7VFdjbpc2yJtQm/oMwRtgrs+N422v+py3EUZ381DlZulwK1d0qfP2S/+Hb9RqBMbPrwbLD6aiI+LMr6bRzXdt/32P9bq9tE2ntB0MoqpGxPHzoq2t0Zb014+TdQbXH0Z/NUv+smXwY83W73FfLlpzJfb114Tvjwff3O2/CTa7pCzP14d6Xdzuvias+W3wOU5+2ag1sDbUAHTXSF/DrwvJ+2YnO+bZjM0cc8r6M1ClsCG0EM1a2zpIagF8H7UFW058HH0QPxx6tjHUcvkFEYyPdquKFP4HMqUqSzPoQmhdkezyx8IXEq9co9HS63tDxwb5VfEFKSXlTXOWZa29An1NOp6bYu0Cb2hzxC0Ce763CraPli1cBUw/+7gy7vB4qOJ+PBJm/6dxRuj7W7RNq6QT0X3/Pt0KnmmvWyaqjeYL/vB6i1uhBAbYL4M5sv94svz8Tdnyy3RdjZqGErOj/MmYC/UK+d3K1Kl52ypym/QTc76XB8dsyz6f3rt8VXANjSzDHVVzkKthBeibllZvyteUis9a/reqPXuUXQjnkZdQMeRveb5ehQkb0HjVJPEraMvks/SKI95BceULZNrvkluQ6b092giqc/XyHcCeuOxX3Scy0MhboW9pfCo/qGqRstc2yJtQu/o01WbLvlW0Sa463Nr1K36Z475+sD8W/j0brD4mIf/+GiKjVpKC1pVAjTRIQyfQHEI3ftXGd5zoa72luKmj37Xnvny6GL1lt6JDTBfBvPlfvHlIfzN2fIg+k1DqMdPkjNR49IVJFakCsGIbwfegLrjrCo4biOqj3HLS3s+sCPq1hQzDV28Rxi5DFqS+9BN3pHO2LJd0OzUL6AlsuIZqb8F/C/qUrcPaglNci3wfuBghovmrmh7DvCH6MbdD/xL4pi4wezVnHJWLVO3fNPcDnwSdev6DPndulzy/SawJ3An8HY6ywImOY/h93Q2uh/XOZbXN3X0WZTet0bLXts8bULv6NNVmy75VtEmuOtzGnrIj/YY1Ko07d9F6XzGxg749W6w+GgiPppgFdLBL4Hj0Tj10Ugbczm67n8GfBf9kQxaunMOGud+OCO7ntfRnos+BkF75stWbzFfFubLwzFfNl8u4lg05Opi1PtnNZrnZn80fOi05MG+erbUYTWaIGyPgmNWoTGrj6KZlstQlPaPkDiTxBN3nUD2OukxL6NJkcYCO6NWzJtQC9/BjOzW9Llouzgjr2uBJ4G/SH2/HM3Y/utoewadbmgx09BkTTcwkjplKso3i3hs3Q/J7/rqku8GdNZWfxf6zenPMQwPzAnAociAHnEsr0/q6LNbep8arXJt87QJvaNPV212y7fK9YNy+pxBb/XOatK/u6XzGRu+vRssPpqIjyaYg97iLQauQm/LQG/Y12d8znBI+0H0O5Pdlpcgzb01df5n0Nj/7wDvptMFfX90nXcj+4+FOtrrpo9B0J75stVbzJfNl82XR2K+3J0H0VCrpaiR5SQ0z8/FSC/PJg8es2jRotEtXjYXoK6FH8nZvy3qJvVJ1EXqHcjgF6AWsTSL6MxynJX2SST2DRNp7kOiaYvPAeci8axwTDMR3dALgM96LEuVfK9HbzH2QAHqK18XjkMC35eRrbmjQZ4+Qeb+DfSG6RfRd0vQeMs9o3Sha7SKNiEcfbpos0q+rrjqc1x0/oPQW4BeoSn/zku3IeHEBlh81KVt/07yAHorfxkaez0+sW8B6lK+D9ndlpNpx6BruQL4BJoQ8BTk+ekKcpLJaL6Nf0Lj5bsRUr2hSt5tas98OdtfXeoseemt3uIvX/PlDubL9Sibt/myZ0Lo2QJqOTuE/DF2D6OuhEtQS9ch0feXoKW34s8SNCvzVV3SvobGvIFapLak0/rWFheishZ1r0yzD5po7Euey1I23yPQZGyXUhyYTZR3E2Rs19LeAyFPn6CufffSGfN4MvBh1PL+dEH6kDRaRZsQhj5dtVk2X1fK6HM/5F/BPzhSNOXfeelCig2w+KhD2/49E03C9xCqfD9DZ1z9WqTHJ4CPAR9Cbzp/5pB2PbAQjfteAJyOKq9FFXroTArqWkEPqd5QNu82tWe+nO+vLnWWvPQhebP5cnXMl4djvlw/Xxf61pdDmLMF1B1xORprdk1q30w0Sc8E1FKYDrq10b8Xkh10WWlfR7MYr0ViWu/591ThZWAu6qI2nuJuljH/Tv567nVwyXdbFJTbo+5y99O9ZbOJ8g6hFuulnvN1pUif0DH3G5ChL0Qzhz/YJX1IGq2iTWhPn1W06ZJvFYZw1+c89Aam12jCv4vShRQbYPFRhyHa8++xwNVoacvL0RK6OwP/kDruNDQ+exadpRxd0t6M9Hk28F5GDqvIomylPqR6g0veoWhvCPPlPH/tVmcpSh+SN5svV2cI8+Uk5svV8i3LEH3qy6H0bAEZ+gmp7+LAuRKJfTYKnCdTx52GJt6aRWcJrm5pd0UT67RdUU+yHHWfd30otMkcNATgA2gSo9nASy2UYzUadrCmhXO76jNp7h+iY+69pFHTZjVc9fn76H5f0XB5msKnf7ukCyk2wOKjKm369150elQ9H5VjPHqrH/MFNCHifnQq9K5pD0CTGW4APOVYprhSv9LxeDDtVcF8udhf8+osLulD8maLjWqYLw/HfHl06FtfDqmx5X7UbejQxHdNBt10/Kx1PqjE4x83Rw/jx9otTiu46BPyzd002gy9qM1To0+dlSHaxKd/u6SbjsVGVXoxPppgCzQOP15FYQ7q+n1X9P/TUTf0WYycC6Bb2l3Q5InHovHv5ziW6b3o3jzj/jN6il7T3qD6ctEfpFZvaYZei42mMF8efXpNez3nyyE1toAq3oeh5aag2aCbBtzjtfTGoNFNY1Bs7qZRA6SR13Ff+StUfPm3S1xZbBh1uRf90TgJmIp6WC1EsXgaWjL0w+jN5BbRZ2OHtNsB/4lWhFiGdH4wGt9u9A6D6svd/iC1eovRJObLRhE96cuhzNkS8wpwIjAfdV9MBs5bUeAcx/Cg+xM6QQdqaX+5S1pQQ9POaHzpS1E6wyhDN42lzX0F6oa4D3rbZBo1JqKKw4KWy+EDX/7dLS7AYsOoz2r0h+TdwDq0KsVV6A3fZ4HNgNtTaQ5AS03mpX0zcCNatjL+I/UeNOnoeXQmDzXCZiKD6cvd6ix0SQ/mzUY9zJeNPCbSo74cytLPaSYAL0T/PhkZ+Tq0vNzlKOieR0GXJg66vLQxHwG+iB4Il6I5AwyjLHkaezN6ICwHPpU4/hqkub27pAfT6CCwGWpseK3tgnjEh38XxQVYbBiG0RyD6MuudZa89DHmzYZhNEHP+nKojS2GYRiGYRiGYRiGYRg9SWhzthiGYRiGYRiGYRiGYfQ01thiGIZhGIZhGIZhGIbhEWtsMQzDMAzDMAzDMAzD8Mj/A9ogMXgvkitdAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABHUAAAAnCAYAAACBm3TCAAAXiklEQVR4nO2de9hd053HP7k1NC5pQioUUUNcipBMKZGiJlIdMzVuRY0YepHWXYxL8VKXqSiJUjM1pglTo4bpoNqKp6Tuw4QQSVqdVBBSwqBuEZfMH9+959055+x91tqXs/c+7+/zPO9zOGevvVfO/q7vWue3f2utfj09PRiGYRiGYRiGYRiGYRj1on/ZFUhgYNkVADYG5gALgSeAvym1NobRjGnUCBlQdgUKJGt/YO3EqAum1e6mm306C6Z7o06YXo3K0a+imToHAS8AD5Zcj5HACNRgRwBzgdHAO2VWyjAimEaNkCHAicCFJdcjb/LoD6ydGHXBtNrddKNPjwDWAJ7LcA7TvVEnTK/dy3DkZy+UXRFfqpipszewBeUHdACWoQYL8DLwGrBeedUxjCZMo0bI28BTwMllVyRH8uoPrJ0YdcG02t10m0+PAM4GXsx4HtO9USdMr93La8CZKLhTK6oW1NkQOAu4pKTrD074bBwwCHi+Q3UxjFaYRo0kbkU62LXsiuRAlv7A2olRF0yrfY9u8emBwD8C5wMfeJY13Rt1IUmrYHrtNj4CLgKuBvqVXBcvqhbUuRy4DP/OIQ8WAiuApTTPjRwOXAccDazqcL0MI8Q0arhwBuqMBpVdkYyk7Q+snRh1wbTad+kGnz4NuAtY7lnOdG/UhSStgum1W3kBeARNla0NVQrq7AJsC9xe0vUnAR8HpgE/AT4VvD8Y+BlwMdWYEmb0XUyjhgvPorTg48quSAay9AfWToy6YFrtu9TdpzcGjgSuTVHWdG/UhTitgum127kSmIKyxmtBlYI6pwP/UuL1nwPeBWagFLp9UdrVTOBu4PrSamYYwjRquHIlMBUt9lZHsvQH1k6MumBa7dvU2adPA24AVqYoa7o36kIrrYLptS+wAt3bM8uuiCtVCepsAuwH3FjS9XcG5gHPAF8DXkEpdbsBhwBfDj6fB2xXQv18uQ4t3DWk7IrUiLEodfLosisSg2nUAHedPgK8BRxeeI3yJ0t/YO3EgOr7OdRDq6Y/f3y0V1ef/gRwFDArRdk66N4HayPpqLNHQ3X0avpLh6v+rkNeN6LwGuVA0UGdI9CXtgo4JuG4rwDzyb56fhoGoB8P1wM7AhOB7YGXgPvRdzQm8jc/h2uuheZnrgL+M4fzRRkHfBX4B7TLQiMnB9c9LOfr1p256F5cgO5PlShDo1CcTk2j6fHR6S+QB1eFovsD83IjpMp+DuV5ug9J+jPtxeOrvTr69AHoh+4Sz3PbWMYIqbNHQzV82vSXHlf9LQEWoO+5TD6FstdfBN5D9ZqOAuz/T5FBnY2BH6CnEO3YH5hTYF2S2A0YiVLrXgd6UMSzyMbZA2yEGttOOZ/7IuBPaAG+VoTXm5vzdbuBi4ENgOPLrkgDZWgUitOpaTQbrjq9G9gd+GThNWpPJ/oD83IjSlX9HMrzdB+S9GfaS8ZHe3X06UOA2SnOb2MZI4p5dDZMf9nwGUuXGRjbHN3Do1B25+XAH4ATgIeIbL1eVFCnH/Bj4FW03WESa6I0qCcKqks7NkBfTrjDyiQ0h7KoRrANEtCvgCdRJ7peTufeEtgbuAnNAW3FWNRh/z6na3YTjwC/Bb6BovRpmIwGDnvkUyWg8xqF4nRqGs2Oq07nIo+f0IlKJdCp/sC83IiS1c8nk7+Xh5Th6T60059pLxkf7WX16cnko1NXn/4YMB54LMU1bCxjRKnqmBvq79Fg+muHq/4eQAGy4QnHFMkP0fSv49F0v9OBvVBwZzRwYXhgUUGd44MLHkXrlLAo49CWjgsKqks75qNo7HBgK+AstCjSRwVd70rUeZ6MOhhQal8rZiOzatxGL1ygaxVKuwv5u+Czn7Y41/eC47dCqWYf0pti65tW5lsvF04Jyp0S8/lolHJ2r+d5QQ1yVcLfbyLH3ojW9Ng7xXWKotMaBTedprlnptHW+GgU3HS6FD1h2i1FffKkU/2Bebm1kzTtpAw6rdUJwG1ot6LtgPtQW3wc+FyL4+P0l6f2oLv156q9uvn0WLSw85MJx8RR1bEM+OvGPLo15tHp8fFp019ritDfU+jfOz5FfbLyaTT1bwlwVcNn5yJ9HEGwptLAAiqwNbrBM9AN2avN8aOD1xcKqIsLi1CU6zG0iv9UtG1dERwG7AlcEVw3TOPbCbirxfFTg3pdANyKGibApajRX4MidiF7B8c83OJcc9Gidkeirfei12sUeTt86+XC/cHrLjGf/wBFUr/teV7QloOtvt+jUGO+J/LeA8HrXwB3prhWEXRSo+Cu0zT3zDTaGh+NgrtOl6AnOmXRyf7AvNzaSdp20mk6qdXvoh8ky4Cz0X1eC/gPNMC/E7W7ZZEycfrLU3vQ3frz0d4S6uPT4WKwz6a4TlXHMuCvG/Po1phHp8PXp01/rSlCf0uQBrZH30EnCb14Ns0BxTdR/Sei7/LXeQd1BqJFpZ7DfQuwT6Po2R9zrosPlwZ/RbI2MA2ltvYE74VPDeLm+D6Bvs8jUSRuJvpeT0Ypd9+MHDsELdS1iNZPWW4ChgbnmgX8KMW/IU29XHkMpRDu3OKzg1CDu4J0T4da3dtpqIHPBM6PvP9o8Fr2lJVGOqFR8NOp7z0zjcbjo1Fw1+ky5LFlUEZ/YF7uh7WT8uiEVo8AvoOeNO6J7slm6B5fjLT81+hHw7SgTJL+8tQedLf+fLRXJ5/eHOniTymvV8WxDPjpxjw6HvNof3x92vQXTxH6W4UWyHbx6BPRd+/KPJIXbw8fdD4d8/nvUVBnSwoI6pyD0hrHEz/Hr5HhwbEftjuw5pwHbIgij68F74VPDeJS9kEN/RDUKa2FIsd3osYVjdpthCKby4gn7MjSzIVOWy9X3keNawL6nsKdb4YAl6Et+87JVGPRD6WwHRu8HocabMgbwApkAH0RH5363jPTqBvtNAruOn2d8uYBd2t/YF6eTB3bSTcyEP0gWAkcirbj/XzwWfik9Ofox8KoSLl2+stTe9C9+vPR3uvUx6dH0ut7VcbXp310Yx7thnl0e9L4tOnPjTz1tzyoaztOBDb1qOMskoM66wavb8R8Hr4/FJrX1FlC8ly0xr9/jZT9LIrefR+txuzKEPSFtiNL3cpmWySmBay+AN2L6CnCnwHrxJRdirYt2xSlpD2I5jaubDguHBAkdbY7ocaUx+rtrvXyIUyDi6bknYO2cvt74kXtygAUqT0WuAR19o0NHOB/cVtIbwnNuvtx8Nk9LT6bmbbiHSKNTn3umWm0Pa4aBTedrsBtu9Al5OuvRfcHZWFe7kbd2skSusvLQWnbGwG/RE+AQeuhrEJPB6F3QB79Md9Of3lqD7pbf65jiSw+nUWnaXy66h4N6X3aVTfm0e3J26PBfDr0adNfe/LW37sE69a0YRQKJrn+TXY4ZxL9gtdV0LymzmL8zDqMroXpm0+juYA+DMTtqWzaulWBq9C/8ySa/63z0artY4hfFGp55L+PBt5pcUzY2NeIOcdANBd6IVqAKg9c6uVD2Mh3RvNIt0Lf2UMompmFQcANwIEo2nxewrFr4vbEajrNaXZjUER9FuqAosxzOGeZpNGpzz0zjSbjo1Fw0+kHwXnbkae/dqI/KAvzcjfq1k6m011eDtomG+COyHs7onTtN4P/Hxm8RndHSdJfEdqD7tWf61jC1aenk59O0/r0GmT7MdcJ0vq0q27Mo5MpwqPBfDr0adNfMkXobyW9WTOdJAxuxV17nehxjUGdL6S86Fr0LvIW98PgmuBvBkpPCnkXGOxwjbR1g/joXNH0Q3Mgw1S62QnH7kTrHwKHojmCf0Rb7J2AIo+NvBy8xqXwboMMIK+Uadd6+fAguldh5PZKFG39Ftnu4RrAzcCXgFPRU6k4+qNO4xmH805v8d5k1MHMBOY417BcjUJ6nfrcM9NoPD4aBXedrkn7Hacgm782UmR/YF5u7aSIdjK9xXuTqZeXR+mH1j6B3vWpNgM+gbZ2DtkjeJ0TeS9Jf3lrD7pXfz5jCVefnt7ivcmk02lan16BtjWPo65jGXDXjXl0PEV5NOSn/6p4NKTzadNfPEXpbzBugccTyXdNnd8Fr3EL6W8RvD4N+e1+9R5wbcxnO6Go4/1B5RpTPN9EHVqR9Gt/SCGsgxZoeh89EWkl1FHoB1WrOb77oojlApSidy9wDOpgf9tw7DIUSR1Na8YEr4+7Vj4Bn3r58Bpa+Gsc2rXgC8DVZKvzELRF4J7AlOB8SYxGepmX4ZppKEujkE2nPvfMNNoaX42Cu07XAN7KULc0FNkfmJdbOymineRJmV7eio8Hr2OD13CgvxW65/fRO3CEZP2NCV7z0B50t/58tFcnn36b+AwBqO9YBtx1Yx7dGvPo9Pj4tOmvNUWPpZe3OQbyX1PnnuB1IgpARdcwWhvYDQWbHobmNXXS8i66ya3+bguOmRX8/08byj6PUqWG5VSXKnE+impejtLVWn0/4VZwjavxj0fRxqXoZi5HKbID0daTjaxCjW09NF+4kTCim7RjwczgPJMTjvGtl+t5Q+5H5vZPaMGw72So77roSc3ng2NcGngYNb4n8ajuIotOwf2emUabSaNRcNfp+mhXk07Sjf2Bebn7eUPq1E6KwiULuYiyoF1LQAtcwuoLZ45C9/4DVs+Ug2T95aU98Nef63lDXPXnct6ixxJ18ukXUX2rSNaxDLjpxjy6mb7o0XmUT+PTpr9mitbfMNyWdRlFvmvqLEb/rlEoiynKeSiQdR1BpmdemTpZWBy8boQWKyqawaSfYxhX9lJga5TuFbIdugHP07yFWpSn0Jzfremd17cDWu38DbS1W7jC+c3Af6NUw91R5DbKLcABwD7A/zR8Njd4vRD4DBLAAuDfI8eEQb4PYuqatl7tzhvlAeDrKDX4JJI10e68NwC7Ao+greh6WhxzMavf04noftzqUNeiKEKjkL9OQ3zumWl0ddJoFNx1umFw7rrg0x+Yl1s7iZKlnRTBQqSFF4Dj0boBnSgbci363vcH7gI2Dt7/JjAJBU8PpXWKfpz+8tAepNOfj/bAXX8u5y16LFEnn16M/HMYxXp0UvmixjLgrhvz6NXpax6dR3lI79Omv9UpWn8j6R2fdpopaLraFSijaRFai2hPNO3qrPDAvDJ1shBNMSuahWg+8FK0cndeZf8ciTxKuFDbCSTPlV6BFr8aAGyPoq53oojkPjSL6IzgdVqLc90CvAT8bYvP7kW7AbwdvJ5Lb4peyHZo+sMdNJOlXknnbSSc1/go8anBLuftj7bLA+3wcG6Lv2NZvYGvC3wZGdnzDnUtgqI0CvnqNIrPPTON9pJGo+Cu0wFogDCvTR2rhGt/YF5u7SSvdlIUk9BTyGnAT9CuHiDdndxw7BhU/23alAU4KDg2muI9A2kvmkHxClqL4ZfA5+hN1d8Tfc9jif8REqe/rNqD9Prz0R6466/deYseS9TNp58MXuOmfoRk8eh25Ysay4C7bsyje+k2j4ZsPu3q0ZDep01/vRStv0+iAPP8NnUsisVomtpMFMw5Ba3FdAXSzKvhgf16eno6X71mnkfb0uWxL30Sm6D0sa+j1LEtUMNdClwW/IWMAf4LzbtdGFP2JdRoorsWPIXEVxZnABehFL7HPcoNRcL4PnBajvXxPe9t6OnLLqih53VeF45DjWQCzdHnThGn0YPQNtJbAs8Gx85A8113DcrElR1EsTp1vWchptFsuOp0W3Sfd0FeVhdc+gPz8niGYu0EquHnIU+j7IIfoaelH6CnryH3oCep325TFpSy/SjSxNfQYpBTUT8Q9yRxM+APwL+h9QtcSKO/oVRDe+CmvzTndcFHe3Xz6UHA62g6yDUJx2UZy8SV74RP+4xnzKOzUVWPhmw+ncajwd+nTX/ZcNXfPijotj6RAEoVqUKmDsAv6N3WrUieQ6mWM9APh32D9x9Ckf8ol6MOa2FC2Q/RnENQ9GwkvdHCsrgc1TUp/bQVu6PF5S5rd2CB5z0M2A/NhWzXmeZd3zWRQd5CuZ1LnEZvRlHicM7pqcBX0JOC5W3KFqlTn3sWYhpNj49Ox6F01rltjqsaLv2BeXk81k7K9/OdUebFM2hQ/wq96xw0avQAlOp+rkNZ0NPTM9Fc/NNR8PNLJP9YCBeF9Rn4p9FfFbQH7vqrgvbq5tPvox+349scl2UsE1e+aJ/2Hc+YR6enyh4N2Xw6jUeDv0+b/tLjo7+x6F5XOqAD1VhTB5S2Nhst+JOUNpmFndFiTOuiyGbjIGtK5Niw8R7YpuxHaC70m0iUqwqquw8rgCNQ6p7P93k7yTsapKXdeTdBjXtzlEa4ALdIbN71HYUi7DNzPKcvSRoNO4k7UMdwJlqJfrFD2bx1mvaehZhG0zMKd51OoneRvTrRrj8wL0/G2km5fj4AuBFt0XotCihuD/xz8PnD6InjMHRPL0GD8lcdyobMRjq9APhLmqeiNJImqJNGf2VpD9Lprwraq6NP34B0G0eWsUxS+SJ8Ost4xjw6PaOorkdDdp/29Wjw92nTX3pG4a6/iTRv6lFJqpKpcx8y9L8q6PxhA7weNZqJqAG+FHz+MBLZMDRvrlXjjSu7I1q9vAo/AkLuRatiFxUgy5NJaPGqA9FCVROBd0qoxyK0sNaSEq4N7XUGq3cSB9PbSbiUzVOnedwz02g6XHX6MZQyOrPY6hRCUn9gXl5d6thOimA3lEEwA01T6UED7nA+/lxgJcrQOAk9gbzKsWzIXihY2R942aFO4Y+FeT7/EEx/afDRXl19+meo7ru2+CzLWMalfN4+nVU31kbSUWWPhuw+7evRkM6nTX/pcNXfMLROzw0F1ycXqrKmDihqdzjq4PJmAupE1kJPQ8I5zJ9FHctgtPXbfmhu4mQ0R/d9h7K3onnBxxdQb6Pv0E5noE7idpQ2OI7eRWVdyppO+xYHo/nCnZjWWgRx/YF5uVF1DkaDxXAxzVOQpjZDmQag4OOjwJHoyeXPPcruAPwGLQi7P9L8F4v4hxiFU2efPgs9ef9Gw/tZxjIu5c2njay4+Cyk92nz6O7hOJQ5+NWyK+JCVTJ1QCn3IyhmYcoN0OJTYXrrJDQPMZzD/B5Kd9sPpYKein4EuJTdjt7dAAwjLe10tgNaAX8KWlzsQo+yYDrta3yL1ls61oW4/sC83Kg689FT3OFoF7ezkBajPxYeQm30IXp/KLiU3RStOTUNmIXWatiHegYFjHr79AwUnBnR8H6WsYxLefNpIysuHg3pfNo8unvoDxxDs0dVlqqsqQNaAG0KSiNLs/1hEtEGuD5qgMfRPMg6AbiL+Mbbqmx/lBq6IUojez3nuht9gySdNXYSj6P0zN3RVBUXfZtO+w57AMuAX5dcjyzE9Qfm5UbVWYQGgY+h9P2pKEgZZR7SXeOWuUllhwG/QpoOB5lPovVYLqb9wrVGtdiDevv0W2gR2LORj4ZkGcu0Kw/m00Z2XDwa/H3aPLq7OARt7b6o7Iq4UqXpVyE9wCPI+PPkVNQxrETbI17b8PmRwXs7oMWbXMseDnwPdTBXo6iuYaShlc6GAQ+gebPRNOebkObGJ5SNYjrtGwxC6x1MRotL1p0emvsD83Kj7tyFtsA1jfVNusmnr0ILxc6LvJdlLBNXPsR82ugU5tN9l3WA69DOfCtKroszVQzq9EcrivfgvrhUHljjNQyj7nwXbdE4r+R65EWa/sC83Kgi/VHmwdHoB+s2wGul1sgoi27y6cFoa+Wp1GOxVsNIwnza6IeyCacDS8utih9Vmn4V8hFaaXwrig/qRBvvZ9DiV4ZhGHVkbfTUs3GnnDrj2h+YlxtVZwJwN/A74ADsh0Jfpdt8+j20LfG6WFDHqD/m08ZQtJ39spLr4U0VgzqgTuKJDlzHGq9hGN3Cm3TPD4UoLv2BeblRdeZQrc0pjHLoRp9+K/gzjLozB/Ppvk5tx49VDep0ijlY4zUMw6g7czAvNwzDMAzDMPogNgg2DMMwDMMwDMMwDMOoIRbUMQzDMAzDMAzDMAzDqCEW1DEMwzAMwzAMwzAMw6ghFtQxDMMwDMMwDMMwDMOoIf8Ha+iryu/2nkQAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3e.B*3e: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*0.B*0: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*1.B*1: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*2.B*2: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAB4CAYAAADxEmOwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d69HcNtKFX6sUgC8RrDcDXSKwnIFtRSBtBnbp1+4/lZ2BrQgsOwN7I5DsDOQvAmuVgb7z8AUoDodXkOCAnNNVHJIg0GgcoNloAMR89P79+xtTXgT+85//fKwcnoVcPg/nJwp/lzdnczcCZSFgXSirPiyNETACRsAIGAEjsB4Cd9djZU4DCHyvDuW/4nNd/6jrP3T8M4b5bASuBAHrwpVUtItpBIyAETACRuDaEPhoTzNWckh+UwV9p/OfJVWU5GFG6pEOZqN+b8une6YFv9T5d51vdCbeGx33dV1UWZDPZARSEVB7ti6kgud0ZwiE9vSLHnyta8/wnyHkACNgBIyAESgJgTslCTMki4wqxvUXnYtyRCQPDhXL/JDrJx0Pgqy6rInZqtf1nS+MwAERsC4csFIvXCS1KZyp73T8oWucdpMRMAJGwAgYgWIR2MWMVXBU/tIZA1sMBUP/rC2X7r+VkA91/rpLWIV/r/CvdPZSwC6AHLY7BNSW6fRaF3ZXc/sQWO3rK0nKMlK/M/dRZZbSCBgBI3CVCBQ/YyVD+lQ187nORTlVobUwU/VUsrVHUpm5wnG6F+LVpxBGJ+F+HegLI7B/BKwL+6/DYkug9+avEu5XnVm5YDICRsAIGAEjUCQCRTtWMqJ8i8TsTufMTwGI8p3US8nJcpWawj1hLBOsqVEevq06SVNH8oUR2CcC1oV91ttupNY7k8G1ezoz2GYyAkbACBgBI1AcAqXvCshmFc9lSP8qDjkJJLmYmeqjt3rwMD5UXJxENt74krBwz7nIskW5fTYCUxBQO7YuTAHKcZYigHP1Qu3tbEBrKWOnNwJGwAgYASOwFIFiHSsZTkYlP9X5h6WFzJk+yMmyvjgD9UphLFvBkaqcJt1zzRbrOFZxeSAbWpS4vFFimYzAfASsC/Mxc4p5CPBu1cGyU1Yy1H9hMY+LYxsBI2AEjIARyINAsY6ViovhHBoFz4PIDK4y8MyosalGbeB1/UhHXKoSZ6P4z6qPdXCuqZmuDvSFEdghAmrL1oUd1ttORWZA6je1OTaziO/YnRbFYhsBI2AEjMCREChyV0AZS3bVw7H6RNdxJqgo3CUXHckbnaulfU3hFIYDxczUv3RdtHPYlNvXRiAFAbVx60IKcE6TjEB4xzKoVer3t8llc0IjYASMgBHYLwJ3ChWdGSCWfJTqVDEjxcYUfUv5mJ2CXt6e/GsEjomAdNS6cMyqLb1UzyUgO6/Gd23p8lo+I2AEjIARuAIEinOsZCiZ6eGbJAxnqYRD9U6y9v1ZMfIX6xiWCqrl2iUC1oVdVtvuhf49lCAuu959gVwAI2AEjIAR2D8CxTlWgpQPk4eclouiHkZIcZyiYT+RR8+ZyYLYrMJkBA6LgHXhsFVbfMHU9ljNwDu4/r61eKEtoBEwAkbACBwegRIdKxyTTqelkNr4NMjxqkceRvD/lOEvuQw9ojvYCMxCwLowCy5HXhkB/iyYP49noMtkBIyAETACRuDiCBTlWMlAsgyQNfPVx/AXR6dDAMnILlSMlp6Rnn2lQBxDf1B9ho4DjoaAdeFoNbq78sRvWOMqgd0VwAIbASNgBIzAsRAoyrEStNFAlj7bw6zUyRKU4BS+UPj90OE8VktJLI2w8GhyD3YHwca60FO/Mfgg9RyLs/o5FR+lY4CL42xn1tWFNEMjYASMgBEwAhMQuDshzpZRMJB8X1X0f5NIvp90vNXBUpS3DYD+obDO2axGnItdBnmf69y36caqsikfts2nLouuz1ULPY8Zy5jY2azoP8EeKpJkty4MAGQdGADnw6MlevBabFjpYDICRsAIGAEjcHEEsv2PlToUGDv+x+lkZmeoxIr7Pz1/rbNHIIeASngmTD9WMvClIzy5ThKyqpIoD5ZFPtSZGQ1TDwLCB+eTwQT/31kPRmsHC+tNdEH5WAcmVl6qHigd/3f4rc4fTczK0YyAETACRsAIZEMg51JAZnPix+2jBZBhpLPD4dmNUbSSIsRtib9JSj0jUajLZzp3OlU81/FGx9UvExQGzFYxAEHbN22DQHZdCPXZqwMUkzg6rAe3WKTqwZuAZVxGzq3JCBgBI2AEjMBFEMjiWKmzwCj8XIqd7MpQzk3s+KMIPFQMZkXozOXuhDCKPLTdPPlT381llLq9WgIrMEsm6lRHdBiS+VxJwi10YUwHgNp6cNrgUvSApYCQlwPe4uBfI2AEjIARuCACqztW6txh4N6FY07RomPlGas5qE2IqzoBW3CNzk7upYDfKM+hpW0s9fxLcWgnV08BKzBbMmtF2iXpr6IehPFWujCmA+BtPWi0ukQ9iPbinw1WvjQCRsAIGAEjcBEEVnesVIrHwUDOLVBcNhgN5dz0jt+PAN96/Kh6YdMK8OU+CykPeI/VISP1v2YRYL9MwSz7Ms39wrOa5Nl1YaIOUCDrwXm1ztIDYR0HZ6L9OOfoECNgBIyAETACGyFwd818ZORYAhhnReayjqPt0VDOTe/4/QiwiUTceQ6Hho+92Y3uzLlRGMvJ+B8uOn0Q3/+w4QX3/L8Y9UPn54nCunYXZBT+bLv8kJ6ZMuqZWYN7CuM7vFc6R9l0O0yKS/q45I0lXU90wO+xDgh+Z+W6fdT92+DJqPcfuq9n28KzFzqDySxSGmZvKSP0te7542hkZdlenUf19BYzsGuHh8c+rYTAZF0gP9XTe51o57Tpv3VAtGPq8RM973pfdeoACRUfPSpODyRX1KtVdSCUeQs9QH6TETACRsAIGIGLIrCaYyXDTEeD3c3GZiv6CvxZeODvbvoQSggP9fKqkRTHFwcYR+TMAVF8OvY4UtVuW7p+qeNG97/roIP5HdeE9dADhZ851yENPJgxwLGg85lC3ytttZRRZ8rBf4fhTCEX+SL3WbkUNkTVJgNKj2zwazo3zCIRPovEi44evJCJto3c4MfW0l1OGt8WRmdWl6a1ERDuvKMm60LIH2f4fpRF1zgJtDEGHLqcKqJ26gAPlAbdKVEPVteBUN4t9IB68IwVgJuMgBEwAkbgogjcWTH3amZjAT8MsGl9BHBCakdDHTscX45BZ0Hx2NEPR6CacdE9s0TMUg05VYpSzUgNOcc4VPCdTUEGOrWR6FBRjugI0blqPo/xes/iSUc5draRrS177+xDL9PbB8jyhfj/oAOnLzqST3rSkS8df1M+BGbpguqMd9LPUZxw/1/d4xjFNhcfN8+ka7ej5nOuaQ9F6IHKkksHKOcWegDWth+gbTICRsAIGIGLIlDNWDU6DHOMU7W0CemVnk732SzFzJJhgOH1bko6xUNWOjlJMsc8xIelPrsjyT31f1twPJglOSujwjqXAzYifqHr/1M8nKvfdJ7SEaQeh+qQWZna0dP1HOI/zpozoswkMKNQ5adz10zQGH820YjlYnbqeSsB8rbDWlHOb5ty6po2+gw+uu7DhnIRb5CUHj1DpjZF/cF5aBMYDWKj57vUg1hQyT9FH2bpgngyA99sq8xAQoNY6vmYDsCjJD3IogMUUvjV+qrr1fQA3i2q2n8rzLdGwAgYgRMEwntocd/xhKlvjEADgbtcq6HR2auXuzSej14qLaPsbOFdG9DRRCtEWCJzM3vxmdIhaybZzbXKdk/CsgTtZHRd93Rw+LPgkxH8dsEUj44lMyw4Vksd55uQL+3lt3ZeU+6VPjpAMXqXIxSfTTqLJ20f2ejogkuNlcLAj7CxWTpF6SbxoLw4sJ3/6dVINaUzfiM+XY4T4dFpmPy9WiNv0h9WDyinypekC0pXvdd0ZvAIjO/rumoz8E0hpadNFaMHsTw6Z9EBMBLvVfUgBXenMQJGwAiE911Sf9foGYEpCNyZEmkkDgaTD8J/aR4KoyPzKIRNWZ7Fco4bxafTYVoHAb6jqr6RarITxnQMcVKonzG8WbJEZ536HYuraNUSqL54dNxuxKd2VCbyJNkJKV3sBNYzCvBK5SfmzELUs18hM/LAuWw7dOHx8CnICMa1szMgH5hVOjDM1U8TEUjWBdUZ7zgGFljSWbUFndl8hXdcF1GPfTpA/FL1YHUdoLDCifLm1gPrDmCbjIARMAJG4KII3Fmau4wm3xuwLPDkEN93OuKzsdF6xCA+xMi9aR0EWAIYcW1zjN+OMOvTSUqLQ0xnkvp7rYPp8zFihJ+OaBedfFcivtUsS4yo+97OKM90sByx6pQqDTM3OD3NmVI+wD8pr+57ecZ8wxmZm7wIRt7aCSRgKj/Fo2zIXM+AkV4Ul5Pd3n34pd238//w1FdLEViiC8yw4nTXDrLuH+g4aWsNAYd0gGil6sEkHaAAwmKSXineFnqA7vTVBeKajIARMAJGwAhsgsDdjLlgeCcZ3yBD3Mp4Tpos4odOAx14Oho4h9Uo9RqZ5eTdlE/5sHRpCMvoMOCgtDv/N0qPU/W3zu8CX0az/6d7/g+rczlaiAdWD8N1+1Q7D+KBbHR2qxmncA9/OrBd0/TVqLfS4OiR9mSEWmE8j5tQ6LLu/A3xrOKFHzrDtVMf+MGzLmvId5Sf4t0L6SgL6emYf6aDTiY4dhFlXq2ddWUwNyyUd9d6QJlVjmRdUFpmqmgX7TZJvZ7NBisMGtIBnpeqB6M6gPDCBP0rTQ88KEHlmIyAETACRuCiCNxZO3c6IjriNzSPdM0Ssm8n5BM78BOi5osiWelIPtNB5wiH4wFl0Hkx5eQdhVMeLFH6Q/d0CMH/jQ46QjXpHqcplon4zAQRdsNZxxtdUmcsn4oUZ7ae6jn/9dRXpz8rAY5FFzHzxSwOHd1vdK5nAHRN/dM54vmJvAqDcASpD+oHGejYsksh7a3qOOtcLwvUsxvdj/EkWqRqVlVpKD9liw5QdEDn8HssHl/qgCf1QHuqnDSF9TlPPI96o8vLkuTctR6AnsqwVBeqtiZWtEtmQ2kbtDf0A960ry4a0gHil6oHozqA8KHcQ7pKNGgrPeB98bbK0T9GwAgYASNgBC6IwEfv35exGZiMNaP5dPbpkNad2S2xUb4YaDpQVQcj5q17Otp8RxY72/HR5HNO3pOF2CiiykrHk6WhfU5EryRKQztglrCv09qbtu9BCk+lwdF8pHN7puImhV+fbISLHzOjOLf8OWsSBZmYAayd1SRGSiQe1oNU8EI6YZisA7BQ+ovrgWTo1YEcMiq/2XqgNLRVNuKp/tYAuUxGwAgYASNgBC6FwJ1LZdyRb1zKgXG9FDGzwGwIxrpJzJSws1vfTEwzbt91Tt59eV4qnA5ZvYRuphA4sKs5VSHvQZ7Kj5kIZvkq0jX1zyzY89uQs99BfmexxwNw5MFsCYHZWrjlbKs5eS/Bb+20S3QAWdZuY4M8E3RgkB8PEyhFD6K9iEvJE7J1EiNgBIyAETAC6yBQjGMlwx5nN85mCNYp6iQujDK/lCwnHdRwTxhLg1IpJ+9UmbKkE144osyexE7PpHwU/2NFXLWDNJEnswM/N4R8oeuflPZkaSHPJ/JrsBq+FD8wAiswSyalZ5ZvEY9G5jnbak7ejSJc9jLUxWwdQGqlvYQeTNaBHDKqzKl6EN8xcWDushXv3I2AETACRuCqEbhbWOkxjg8uJVPoDPVlzxr+vk0Z+tLU4Tl515mUdcGyyWpp5wyxmC1cvJStld8UnoyUf6q8WfLJcjy+o+lbjjqFX0uEwdsf9TR1dm+QcerDnG01J+/U8mZMl6IDiLN2G5vCc44OTOFHnDmUqgfRsYoDc3PydFwjYASMgBEwAqsiUMw3VpRKnS464o90/mTVUs5gprxZAsasWZy1eqWwX3XwMRqzAmyVnEQ5eScJlDmRykunhyWUaztLmSXfhr1wwZGjbRU32i6ZrAcrNAPhaB0YwXGJHigtNoN3zKH/4HoEQj82AkbACBiBQhAozbGiM8fI5ScylNGx2Qwq5cmubH/pXM8g6Jrlf3SOkIvlYc1nfHOFYYe+1jO21yYuzuHJsizdT+KteCwDAgdmTth9r+YTnr3QOXkTDfE0GYFBBNS+srXVqbwRUHGjLnDLbPETHejXYx1QNehxe+nfa0RAbYSNK17rnDzgdY24ucxGwAgYASOQB4E7edgmc+VPaKEl3zLdcpj5K8NMZ/JG59pxCvcsCYth7Q0OXugZDhff4rABAh+sc66dId3Dcw5vdiVkhoc07Q0NvlEY30KYjEAWBHK21Zm8KR+6xG5v6MMrHegbgxYsW8PpauuHgkzXgoDaAU427aB6v15LuV1OI2AEjIARKBeBor6xkqFkxued4GJE+mzjgFwwKk9miHDm+jbOwHhDL29P1S9/8vlFkLcK0DUdPUbVa5rDW3GZAaMDCTECy3ddTSKs79ufZjxfG4HZCORsq3N4I3iI33SceC8wqBD1C/1rPtet6coQiANwm9mKK8PXxTUCRsAIGIGZCBTlWAXZcV6YmdmSGAF/p85c3wfQjIzyLQydu4p0XX8Xo2scr2c6njfj3Mas/gx0Em946ogygMHzwCOe6Ei0w+Izn43AUgQm60FCW53MOxSC5V21jimMQY848HKjZ14Ou7S295+egSbemc12sv9SuQRGwAgYASOwWwRKWwoIkHyz9LGMZRyNzAqu8sEpwnHqnAlqyMGSvzPSc9I+1fk7HbXjRUTdz+Id0+tM2UlbLylUGLNZhHXKqXCTEUhGIGdbncubQihNHGCIZWKg4ed447MREALMYHa+l42OETACRsAIGIFLIFCcY6UOFY4DI5BbjUizpAiKS/Bu7z78MtLOSPmZQ6MwHCC++eAbkIp0jfMTKZU3Za9H5wMz8hqa+Yp5+mwEUhDI2VZTeVflCHqGXtVLvtCzlq6llNlpdoqA6p7l21A9+HR7618jYASMgBEwApdDoDjHKkDBtxPMAjWdlCwoKQ+cuHddzPWMEVEcmjMnLzyjc9c27HxgX1EqbyVmFqy9vMXfV93C6t8MCORsq3N5Kz569ZsOdA9i8xgGFZo6wSYvnXpbpfDP0RFgwOtkefbRC+zyGQEjYASMQPkIFOlYqcOEs0Knie+WtiCMdNz5r8pPMtzTBU7S/VaH7iY8I/5DXdMB/FYHO5i9UVj7G6hZvJUeanYgb8S3mhlTuHe/quDxTyYEcrbVObxje3+rts/gyskmLkEf+maYM0FjtqUgEOqfwSfalMkIGAEjYASMQDEIFPU/Vk1UZDw3/U8r5cfs1GMdzU7c2XdTyKi4OFGVUQ/pcMBwhojftWRwMu/An85k5Pm3rvlPq+q/rcT/xOkivskIrIVAaM+T9IA8FX9yW53KO/Bk1pqBCvJgy3V0iFlb/vIAh6teFqh70xUhoLpngIkZzLOVBFcEg4tqBIyAETACBSJQrGMFVjKcdKJ+1/mqRyZVfjqZj3Tu2w4euExG4OIIuK1evAoOLYDaF7OZOFYX+RP5Q4PrwhkBI2AEjMBiBIpcCtgoFf9Z81TGlGUfV0F0THW0/4iY2ar2EsOrwMOFLBcBt9Vy6+bAkrEL4NdqeywVNxkBI2AEjIARKAqBoh0rGU+2XMahuKYtdVny1NxWmiWBPwkLL30SEKaiEHBbLao6ji0MjrxKyG6pfhceu6pdOiNgBIzAbhEoeilgRFWGlP+24o8gD78kUGWks8r21Hy7wrdVvyjs7LsthZuMwEURcFu9KPxXlbnaGksAmc33cuirqnkX1ggYASOwLwR24VgBqQwqy+Oe6+zRyn21MUtrBIyAEUhGQO/8uEPrF7r2EsBkJJ3QCBgBI2AEciNQ9FLAZuFlUBmp/Fcwss1HvjYCRsAIGIEDIqD3fdx10k7VAevXRTICRsAIHA2B3cxYHQ14l8cIGAEjYASMgBEwAkbACBiB4yBw9zhF6S9JGPWMfzYcdxh8onAvK+mHzU8OiIB14YCV6iLtHgHr5e6r0AVYEQHrw4pgmtXmCGzqWElZ+P8R/kSX3f62JD56/lfMUNfsMsg3W2wOYTIC14SAdeGaanulsuqdyZI8NhE69FbnKqdt1EptxmyMwAIEbKcWgHdtSUuzT5stBVTBMcq/6fzT2pUeQGXXKGaj+EPhE8dN9+8V/qXO1e56OhPvjY777bgKMxmB3SKg9kwH2Lqw2xosV3C1LTaR4D3Oe/Nws/0qk21Uuc3Pkh0IAdupA1VmIUUpyT5tsnlFMFhsl57DqaITyTI/nCn4Pwj56bImZqte13e+MAIHREDt3rpwwHotpUhqX7xj+cuL+g/MS5FtqRzBZthGLQXS6Y3ACAK2UyMA+XESAiXZp+wzVirsU6HEbn6r//+IeDI6/0znk/+30v23Cn+o89ddNaRw/mjyK529FLALIIftDgG1ZevC7mptnwKH9+fnOne+X/dWKpXDNmpvlWZ5d4mA7dQuq21XQpdgn7LOWKmALLnDicllgJmpehqUtVn5zFzhOLF05YRCGH/Cu7qjd5KRb4zAtghYF7bF+2pz0zuUgax7OuOQ7JpUBtuoXdeghd8ZArZTO6uwvYlbgn3K6lipQvgQmD/1/StT5fCd1EvxP1nvH+4JY2lUTQqPRvSQ3wjUBfXFNSJgXbjGWr9cmXGu+MCcmdI9k23UnmvPsu8NAdupvdXYPuW9qH26mwszGVxGMz/V+YeMeQx9s/VW+T6MeQenih0JvyQs3HPO5fTFrH02AtkRUDu2LmRH2RlEBNTeftXB6DMrEuodV+PzPZwlv23UHirKMh4GAdupw1Rl0QW5tH3K5lgJdQzuUGdvlYoJxpFlfXHW6hWg6p7Zqcpp0j3XP+rAsYrLA+kMnHybpXuTEdgtAtaF3VbdXgXn/clOr8xc7XGAyjZqry3Pcu8WAdup3Vbd3gS/mH3K4lhJcdg8giUiz3PWhPJhGQc7OdUjprp+pCOu/Y/Gnl2skOdkN6tmupxymrcRyI2A2rJ1ITfI5n+CgNpc/GuLnN/RnuS51o1kt41aC0zzMQITEbCdmgiUoy1G4JL2KcuugCoQ62j/1DnXphU34k1HknO1tK9ZCwrDgWJmit0Is8+aNfP2tRHYGgG1cevC1qA7vwoBtT02AuL/nz7RdVw1UDw6ktU2qvhasoBHQsB26ki1uY+yXMo+rT5jpYLg0LD0LqdTxYzUIx19O/sxOwW9vD351wgcEwHpm3XhmFW7l1JVf7ouYWmH2b6nXRMM26g10TQvIzCOgO3UOEaOkQWBi9inOxmKwgfN76RI/JlkLmLt5FAeOHZ8XL2bEdRcQJnv4RGwLhy+isstYHjHYrzq5djlSltLZhtVQ+ELI7AJArZTm8DsTJoIXMo+5XCsmEmKXmKzjKtcCyhmo3CcOvPQc/KH2KzCZAQOi4B14bBVu7eCsRSQPwzmvbwHso3aQy1ZxkMgYDt1iGrccyE2t0+rOlZSIJYB4vhU33xkqolPA99XPfwZGeH7rk7HqyeNg43AHhGwLuyx1o4nc1xyHQe1ii2hbVSxVWPBjouA7dRx63YPJdvcPq3qWAnhaFizOTUyjOz017nET8/4kBoZsn3fJd4mI1AEAtaFIqrh6oVQO+R9zHG2kVCB4NhGFVgpFum4CNhOHbdu91CyS9intR0rDCvfPsVtznPhzqzUyZp+5cls2Qsd9zfIP1e5VuUrHPayNGfVck9ldhB8rAsTK/wg9T2xtPOirYDNa+XIO7h0so0qsIZWaH8FlmodkQ6Cje3USHM4SD2PlDL98UJ8NrVPd9OL2ZnygUIpQFYSwD/peKuDtZNvG5n9Q2Gds1mNOBe5DLI+1znnph512ZQP/9OCg5vbya3z3OEF34V8pWMXu5l14SvZd6cLlENyo7vWh65KvUzYUl3gvRZngy5Tgmm52kYN4LS1XiKK8rStGqgTPVqqm8PcN3iqOradGsDZOjAAzodHS/RgU/vU+z9WqmhGH/kfqJOZoQ9lPL1SvI8V8j8dKNCkNKccjnu3NTbKjyWRD3VmlMg0gIAwwqgzy+r/OxvAac1HwnrTd4Xysz5MqMAluqC0bLfOhkFf6jrbUvBmMZSPbVQTkIXXwnNTvURc5WndnFBvwsl2agJOa0bZSh+sA9NrLVUPlG5T+zS0FJAR5U+nF7naqY/o/PGi6RQBKhX65vaU7ze8DJ7p3OlU8VzHGx1eJqhqEA7MVjGAQKfCtA0C1odtcJ6Vy0JdiCsVtlwOaBs1q4ZHI2+ml0gS3rm2VaPVYjs1AaIcUbLrg3VgXrUtsFGb2qdOx0rCMzoyl2JH3UvPzpF7qCBmRHBqci+X+V75DG01T/7UVXMJpW6vmsAL3EzbIGB92AbnlFxSdSG+9/+ZkuncNLZRcxGbFH9LvUQg26pJ1VJHStXNmoEvZiGwhT5YB2ZVSRU5RQ82tU9njpUMFiOO78Ixp8hxdisWYE7aw8YVnjgxYEJjgHIvk/xGeQ4ta+Pj7b8Uhzo2CYGAF7h51ipzixDG1ofMGC9hn6oLShffJ9EOLBFjMK3yso0aRGj+wwvoJULaVs2oqlTdnJGFowYENtQH68DMVpeiB0qzmX2iOGeOlcIeB8FnFvcmdkpjAeamP2p81pD/KEz5eA4Hi/sspDzgPebYMmP1axYB9s0U3LIv1dw3RKtIb31YBcasTJboQrQDOQW0jVof3c30EtFtq5IrcIluJmd6hQmz64N1YFGrStWDLezTzd1m0VTRLAGMMyvNR1OuPwuRvMTsFC02kYi7zuHQfItC6ThzbhTGmt6vdcTlgnz7w2Yg3POnyzitNKgnCsNRaxOzUWcfjof0zJTRqJgxuKcwvk94pXOUTbfjpPjwiGuPmSp/ogOej3VA8Dwr2+2j898GP5YQ/aH7erYtPHuhM5jMIqVhVJsyQl/rnj+NRs5HOtd5VE9vf8AN/LqeNaL5ciECc/WBdhtnKNhFsGqvOlO3cSDhO913tTnrQ6gs4TNHH1J1gffTpyHLLCeVwzYqC7LVZkfRFkyxU0v0khJk1U21k13YKYDYSDfJyjQdgcl2Cpaqw/c60Sfj3fm3Dggdoc/xiZ7zbm2qbIMAABR5SURBVGxTVh0gM+W7Cz2QnHPsE0VLsVHZ7ROCQbVjpYLRAJb8BxUVaGogEDB91QjCaaVjgBNy1hFUfDr1OFKsuyXeSx03uv9dB0pLB5IG1UcP9ODMMQ5p4EFH9JHOKHQqfa/0vDBudEZG/jsMZwrZyBvZz8qmsD6qPl5WWmSDV9Ox+Ub3hM8i8aItwgt5cPiRGfzYrrPPSWPTlejQ6tK0NgLCnndMij5QNzjGseN3Qz3qwBG/PyCn9UHgCKO5+pCqC2+VXTY7oHLYRg009tRHAdct9RJRc+tm8XYKEDbUTbIzTUBgrj4Eltin2hbpGkeBvhCD4+96ss2tA2RbvB4In7n2iXKl2KjZ9kmy0Yec2y/8s3aslJgG0LmTHKWYQNVI5UAjmsDicFFwQGpHR9jwbRMzToPOAvWgg8pkVJ7ti5kh6pul0qOaaKA0nj7CocLBSKIgBy+LSLwwKMuTEEAbaD4Pwd0n8ePlEw06srVlJ2zIkexmfDtq/oX41y80XSNXlLMrHXnTcTPlQyBJHyRO5bCrDtn8papTnWk7z0dEtT7cAoReztGHJbpAXrnINioPslvrJaXIppt6N2Avm3aId0aJdgocttRN8jONIzBLH7BLYvlzZBvu/6t7BrObA8UxSjxn0wEyUN570YO5OkDxUm3ULPskDGkLs6lyrEIF1A7AbC4LEihvplB3R5L7owlC8zJnluQsqsI6lwM2In6h6/9TPJyr33T+s/Gs75JGgxHpI5y1ObNJbT6vJQeOYSRGaBipqfLUuW82KMZvn3E0Y7mYnWp3lJG3HdbmcXbflFHXvLyewUfXQ9hQLuIOUuDHS3M0boNRtRSxcX92Kb671AMKItmn6AJRU/UB40RHCUMRZ60eK9+xgSDrgwATTrXO6nqKPkzSBbGeTCHfZL1ReureNmoy4rcRhdsU3dxaLxEup27uwk4Bguoni26KL3qerG/I1kXiu1s7RXkk/+r6IJ6s9Gr2q1gtA431h3LqAPnvQg+E3VwdoGyr2yiYrkV3VShG6RkJrguXyBwP8kZ86lHlKXwUf0pDn8KqqDgq1z0JxDTsyYgF+CicP1LGE24qo24/kOKhrMyw4Fgt7lCEfKnr3z7kMu9KPKITFBN2OUPx2eiZMhJJZxwocKmxUhj4EZYyY6VkFV/KiwM71gEn+thLjjjIisz1lH8VuMKP+B5SDyI0Kl+yPoC5DtoGDvIPuqZdxHXsMYtZ58DD+tCN2iRd6E56NutcRaMOdZGkN0prG9UD9tJgYVuUXlIeyYR+J+um0u/KToUyT7VVk3RTGCTrG/L0kfjaTnX024RL1X/WmQEgBiruhzrog3IwXGkX6QDMxWNXeiB5p+oAxZukB0RsUeWntMJWv70rjhSGD/XowDeJFy6zLYQzszDWOUWRodQC36Y+zu9jFeVstkU40kmkwT/SecwJZSkcI/S/KO4/SKvrIaLRoJBdhPNyIx61o6Lrsfy7+FRhShudodo5hF/IY0zONl9GduqZr/AQ/hGrdvzR+yAf7TfOcNwgn44+2ZB9E6UbFf6YEZbqQzVjpfqrRtcFUe2ED8BlfQjgCDf0aao+pOoC7/6lA3Rd1Wkb1YXKOmGX0Esk30Q3Q7unPRdppwBiI90kK9M4Asn6oHrkPcUgOJ9y/ElWOtOP5lzdc92gTXSA/JS/+2u3vsks+yTcqE+wm0N/3lVCOtp1ZzumVjizKqwRHZvOjEniCDIvMdNtJ+ZdDxCsx0XhmPHp7CAKdzqSKCjOBXGZ1h8b8aXRoNxdhJNWK7d40kElfhWm+yGn44bniouTzSwc7YUZN2RrNtRqIwqF10Q6HX04xHjI3ORDOPJ2tctRfsqPst3o3MaWKfq+9pyrU4gopuX6wOAO7YFZK95LY20KzK0PAkFYzdWHJbrQ1mPqYRGFeu96F9hGLUK2Soyz3adLU+xUil6ScRbdVFl2Y6cAQfJuqZtkaRpGYIk+sBroZJMl3T/QcfbuCiJk0QF470kPEnSAIqbaqFn2SbLRz51NdwdS8ILimEp9L+ep6et4oVFUI6wKpBNVOwR1pISLXHzboigfpoOHsIuKRqW1O/83So9T9bfOEVOcgf/pnv/DGqpocHqoo4vqhigeyMYLpBrFC/fwP9nZpsWE+uDA2SP92+ZzhfHsVSuMeGN8SUJjR76KAi/4nZQ15DvIT3HuhXSUhfS87D7TgQHrc6r0qHJaV2lnMFuDQnnBAcdzNT1Atpy84d8k5bVIHxq8GD3CuWeJ7BSyPqTpAwM4Kbpw9l6YUkkL4pAfx1R6NzXiWLxc+pOLb1d5LqiXiJNLN3lfchRtpwBA+KfYqlTdJMsslLPN5uTdBkN5JdsppcU20YdpD37TB3nZzivc59IB2O9CD4Rbig5QvhQ92Mw+3UHCJtFAdMTvcB7pmmVo3zbj9Fy/DeE0rmRSXjQIRqVpdDgdD5BB50WUi29TKOXB/0P9oTCUDOze6Dgx/LrHaYrlIT4bUxB2w1nHG12CN1PSkZjZgp7qOVtM99VHHGG8jX36+51ume3h5cG/fTeXyNHhwLnh+Ym8CouEM0h9UD/IwQuDnQppL9ULSed6uYWe3eh+Cl+iIhvxKT9liw5QdEB5zPMp/B4rHjspwpN6oC0hMzuK0ab6iDix3ffF2SxcsmbRAwqQk3cTIOWzSB+avILctK85Dqb14fYP3+fqw2xdUF3H9wY6mpWUl23UAoQL0Eukz6Wbe7FTYJBiq2brJhnlIrWlq7dTAQP6QPShnumefgzvKPpy2MC+d2IuHaC696IHKTpA+WbpgepgM/uEcDfv379f5fj3v/99T8d7HU9TeSrtxzq+b6dX2Lc6fmmHT73PxXdq/lvGU1nf6LiXkqfSfQVWKWmH0szlq/jf6/ijj+dcfn18Yrj4fa7jTby/9FmyZNEDypWTd27cJDvvmK/m5KP41ocZ73jhlaQLoW7e6/ztnPrZMm5DRtuoGW1irI4CrrP0Ep5KV5RuSp5Z9k/xbacy9NdC28hmA8fa85bPS9OBgP3h9EA4R/9kE/t0NmNVeVsJP/II42xAeyp0DjdmF542vMuYlpkSdndj2jCFcvFNkSV3mu+VwckSuhkZsolJ3+jKDDZnUXv5Kj9Gd5jlq0jXjCww+vP8NqTzt5dfZ+zxQGa3wK0Uytlec/JeFT+1BUb7fmwwZXTrZFa08azv0vrQh0x3eKousFwVmrWG/TbJNr9qO7ZRK0C9kl4iSWm62WtXVGbbqfO2k9OW5OR9XpLLhZSmAyBxRD3Y1D6t5liFdolR5WO9VGLq9KVeYied+3BPGNN/KZSLb4osWdMIK5xQvp+KDWlSfoqPQxM3IJmUZkqkCXz59unnBq8Xuv5J6To70BP4NViNX4ofOIEXuJVCOdtrTt5r4/dYDKtlsKofBlVOvuGbklmoV+vDBLAW6kJ830TnZUKOF4liG7Uc9sV6iQgl6aZkGbN/tlPn7SanLcnJ+7wkFwopSQeA4MB6sKl9urtye8Kopjo/VOpQ5/atePdtzDBYjFx8BzO97EO+UeI7LnbWm0rMFNbfXU1NNCHeGF9GyD9V3nxb9U8drE0++baqlccYv1b00VtmRFJn+EaZp0TI2V5z8k4p60gaZi357o+28W5E9iFW1ochdD48W6IL1btZdVTsjFUopm3Uh/pOvVpLL8m/FN0csyu2U63WMvI+Tu6vkU1O3q1ilHBbig6AxVH1YFP79BFrKtciKQNLuDDOn+j6ZNZpah6BB8sJY/pXCvtVB4Ly4focZ6HONhffOoPCLlRePHSWT+ZwlgorbZo4woYOO22ruM6gZEKXVtcDkMrJG/4lkspsfRioGOGzSBeUnq3PX+uc9H4eEG3VR5LPNmpVRJczU51YNwdgFD6LdHOA9eJHQZ9spxYiaR0YB3CJHijtpvZp7Rmr1wEeZq06l3INwafCsysb/4tRzyDo+pEOjCF00gFWOMuD4g57X+ueLbZ5SZOmnv3S9WS+isuSAPJj9oQd+Jp8ePZCYYwwFE2SEazsVA3UkjAqEh/JNbm9UjzFn6QHIe5k3uIbdYGkjPiwzTn6xVIgqBr0uL0s+1dlsT4MVJHwSdYFpaVN0FZoW6XTkWwUWO9aLymAdRMU+mmJbvZzXf5Eck2yJYoX7cjkPtVU3pSiwZ/bXeqDymD7RO0NkDBKslFKt7l9ujNQjtmPVACWWbzTETtek3kobWWUda6dKhLrnmVhMay9ycELPWOGDCeOj0v5EJBz0xmaxVfp2S6TCiQd/Jr0jW5Ya20yAlkQUNub1V4VH6M1qgcIO5e3kqBLP3Domu+byOeR7lkWQ75t/VCQ6QoRiMu/Zw+mbY2V2u4RbJT1cuuG4/xOEJAezbFTs/pUM3kjl/XhpHZ800Jgc/u09owV5XmpAwdkMkmRmCGi8H07CtKJg+Ad6VNdfKG0OHIV6ZqOHqPqFc3lq/jND+RZ0sI64SYRNvT9TzOur43ALATmttfAfFQPiDeXd4jfdJzQMwYVon6Rb/O5bk1XigDvRVYanKwoKBiLPdsobGVT76yXBTe0I4o2x5Yo7qw+1RzeYBviWx+O2NDWK9Pm9imHY8XSPD6AY2R7qhPCCDgfpzOa2EVM5fEtTNOJqo24wj/W82c6njfj6H4uXzoHUQacQz7SbRLOXzus+dzXRmAJAnPb643a6xQ9QKa5vPlepuat9Ax6sNS20kGdi18OS6FNmyCAw0372gvt2UZZL/fSyo4r52Rbgg3RMadPNZl3gNf6cNx2tlbJNrdPqztWUiI2mKBDRsdr1LFSXJyiynHqQlHPcWYglvydkZ6Tlk0aTgx7Cl+liZ1G8kSu5pJCRl4IGy2T4piMwCwEUtprMwOl79QD4qTwVppoDGM2XQMN8ZnPV4qA2kn8/rV+V5YOhWTes42yXpbewA4s31xboviT+1RzeQOz0lgfDtzelhZN7eMi9unOUsF70jM1y6wVjsgYsaQI4huOLsJhYqT8zKFRGA4QM2N8A1JRI89kvmKEU1iPzt9yviGvoVm1EM0nI5CEQHJ7HdEDhEnmTeLAH12uv6FBzzh4brpqBHg/n6wm2Akae7dR1sudNLSDiZlqS6b0qVJ5VxDbTh2spa1TnIvYpyyOlRo4o5eMVLA8b5AUl9kt4p6RnjGFh0NztuwoPKNz1x4p5QP7G4Un8SWtiNH/5jIowvx9FSiYsiCQ2l6VDh3p1QOEnctb8eH3mw50D2LzmHeBTxWgHz5I7tTbGMHnYyMQ2gfvypPVAnsotWTfnY2SzNbLPTSuA8uoNpjarxrtU83lbX04cENboWhqH/RfLmKf7q4gfx8LjC1/9tr+7qkrPnE5mjNP93SPk3Q/KJwub0n3PKOzx6wSZ3ao+UwHncymEzaLr9JG4uURR09ulAcVxEFeJiOQC4FZ7XWGHiDvHN6xvX+nPJiVetsscNCHvhnmZlRfHxsB2hSzVe1BqL2UGvn3ZKOsl3tpWceWc44tiUhM7VPN4W19iOj63IXAxezTqn8Q3C6ZDC7bo7OenQIOkuLgFD3W0ezE0bE7GxVXGNtrVjxDOhwwFJf4J0sGw/NJfJW+IqWhMxl5/q1r/n+BtZr/1LO9diIkvql0BOa0V8WdrAeUeypvxaP9s1TqTUjHluvoJ7O26PRb3dfLAoljui4EVP90ahjQSv4z+BIQUzl2Y6Mkq/WyhEZjGW7UFif314ArtN1JfaqpvANP2ym3xzME1DYuap9yO1bMLP1Xx9ms0xkSBQeoklDeRzr3bQdfsPQWzQgYASOwLgJ6F+J0M5C1awdb8h/CRq1bu+ZmBPIiIL1znyovxFfN/dL26U5O9FU4dmx5rqNzR7+ceafyRuF1MIpZka4ZJWS2inKYjIARMAJXjQDvSAHAMuxdO1VUosqwOxt11Y3Phd8dArwvdLhPtbua26fAtDdJflH7lNWxolpUSL6b4sN3CrsHYor754agTF//JPl334lolMmXRsAIGIHZCOg9WH3XoHPzW9bZfEpKoLLszUaVBJ9lMQJjCLhPNYaQn6+CQCn2KetSwCZSKjAjFmxkUbSDIvl4CbBxBTNVfFv1i8JOvttSmMkIGAEjcFUI6D3IsjkGmr7Q9bujFV5l2oWNOhruLs+xEZBeuU917CouonQl2afNHCuQV8H52Jl1+Sy/MBkBI2AEjMAOENA7m4Emvpc9pFMVq8A2KiLhsxEwAkZgHwiUZp82daz2UUWW0ggYASNgBIyAETACRsAIGAEjMA+B7N9YzRPHsY2AETACRsAIGAEjYASMgBEwAvtD4G5TZE2nxQ0m/lY43xexm4v/t6kJkq+NgBEwAkbACBgBI2AEjIARMAItBOqlgHKgTj7cDWsWCfvSzlULNd8aASNgBIyAETACRsAIGAEjYAQaCFRLAeU48T9NH+tc79ina3Z94n43/0HVKJcvjYARMAJGwAgYASNgBIyAETACmyEQv7HiP0m6dup7pfBHcrLYEcpkBIyAETACRsAIGAEjYASMgBEwAh0IRMeKP3182/E8fl/Fc5MRMAJGwAgYASNgBIyAETACRsAIdCBwZ+JsFH+YazICRsAIGAEjYASMgBEwAkbACBiBDgSYsYpOE99U9ZGXAvYh43AjYASMgBEwAkbACBgBI2AErh6BuBRwDIjPxiL4uREwAkbACBgBI2AEjIARMAJG4FoRwLHq+rYq4hFns/hfK5MRMAJGwAgYASNgBIyAETACRsAIdCDAN1ZxCWDXcr8YFjex6GDhICNgBIyAETACRsAIGAEjYASMwHUjEJcC/i4YPu+AIs5Y8dxkBIyAETACRsAIGAEjYASMgBEwAh0IRMfqFz170PH8vsL+bMxqdURxkBEwAkbACBgBI2AEjIARMAJG4LoRqBwrOU4/CYa3On8V4dA1ywC/0fEkhvlsBIyAETACRsAIGAEjYASMgBEwAucIfPT+/fsqNDhS3+uGb67YrOKhjucK/1NnkxEwAkbACBgBI2AEjIARMAJGwAj0IPD/hWrB/2g87CgAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial y} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial x} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial x} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂y ∂y ∂x ⎠ ⎝∂z ∂y \n", "\n", " 2 ⎞ ⎛ 2 2 \n", " ∂ ⎟ ⎜ ∂ ∂ \n", ")) - ─────(Ay(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))\n", " ∂z ∂x ⎠ ⎝∂z ∂x ∂y ∂x \n", "\n", "⎞ \n", "⎟ \n", "⎟ = 0\n", "⎠ " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABF4AAAAnCAYAAAA2JozlAAAXHUlEQVR4nO2defQeVXnHP9lMIGwSiSyCQcWwCIalgCwhQYo59GC1KMhWgriBsi8FwvIDDSh7EEorhxqwUEqlFNwqHCFlC8UGw5LEokiAQFikBMMSwpL+8Z3xnd/7znZneWf5PZ9zfmeS9517587M93nmee88995hAwMDGIZhGIZhGIZhGIZhGMUzvOoGxDAyZ/mNgTnAQuBh4G/yNsgwCsT0aQCMqLoBNcZsxKg7plGjiVh8bbQd02i7aWzsPKymGS9fBJ4F7s9RxwbAeGRw44F5wETgjdytM4z8mD4NgLHAccDMittRNOOBMcDTOeowGzHqjmm03YxDfuzZqhtSIBZfG0MB02i7aWzsXMeMl72Azcj3UABYigwO4EXgFeADOes0jKIwfRoArwOPASdU3ZACGQ+cCTyXsx6zEaPumEbbzSvA6agDpg1YfG0MFUyj7aaxsXPdOl42BGYAF2QoOzrmux2AUcAzWRplGAVg+jSiuBVpYJeqG1IAI4F/AM4F3nEoF2cfYDZi1APz40OL94DzgKuAYRW3JS8WXxttxjQ69Ghk7Fy3jpdLgUtwC9hBY/hWAEvoHcc3DrgOOAJYlbeBhpEB06eRxGkouB9VdUNycgpwB/CSQ5k4+wCzEaMemB8fmjwLPIjS2puMxddGWzGNDl0aFzvXqeNlZ2Ar4CcZyk4DVgcuBK4HPuR9Phq4BTif/KmVhpEV06eRxFMoLfboqhuSg42Bw4BrHMtF2QeYjRj1wfz40OUK4CiUNdJELL422oxpdOjSuNi5Th0vpwL/lLHs08CbwCyUSrYPSgudDdwJ/KiA9hlGVkyfRhquAE5Gkzk2kVOAG4CVjuXC7APMRox6YX586LIC3d/Tq25IRiy+NtqMaXRo06jYuS4dL5sA+wI3Zii7EzAfeBL4KvBHlFq2K3AA8Dnv+/nA1nkbWjLXoUmgxlbdkIaxPUohPKLqhoRg+jTS6vNB4DXg4NJbVDzvBw4HrnUsF2UfYDYyVKiz//Zpgh837bnjor3rkI8bX2qLisfia2H2kY26++cmaNS0546L7hoVO5fd8XIounCrgK/E7Pcl4FHcV8EYgR4mPwK2BfYGtgFeAO5F5zcp8PeoY/1hrIHGEa4C/qOA+nx2AA4Bvotma+7mBO+YBxV4zLYwD92L76D7Uxeq0CeUo1HTZ3Zc9Plz5DfrQlofvh8KfBY71B1nH1COjZTlv8FsJCt19d8+VflxF+K0Z7qLxkV7i4EF6DrXgTbG12DxS92os38239xeXHVXh9j5Qyiz8DngLfTMuAy9mPwzZXa8bAx8H/VCJfF5YE6GY+yK1mqfBSwDBlCPYpnGNQBshIxluwLrPQ/4E5okKAz/WPMKPGabOB9YHzim6oYEqEKfUI5GTZ/5SKvPO4HdgQ+W3qJkXHz4AcDtjvW3yX+D2Uge6ui/fary4y7Eac90F4+L9u6kHj+S2hpfg8UvdaSu/tl8c7tx9c1Vxs4fRffxcJSBcynwB+BYYC6dTO7SOl6GAT8EXkZLi8axGkopejhhvzDWRyfmz9I+DY31K0vEWyIB/CfwCHr4FbEu/MeBvYCb0DjFMLZHD9nfFXC8NvIg8Fvg66gXvA70W59QjkZNn/lJq895yC9Pznic6ShgnZKxvI+LD38fsBvwkOMx2uK/wWwkL0X47+kUo/1uqvDjLiRpz3QXj4v27kM/lsYl7FcmbY2vweKXupLXP0/HfLP5ZndcdJc3ds7L36NhqMeg4W2nAnuiDpiJwEx/x7I6Xo7xDng44Wl9Qfz11RdkOM6jqLdzHLA5MANNfvZehrrScAV66J2AHgqg9LYgJyIHc2JEHRNRCtLdgc++7NX7ryH7f8+rb3OUbvUunfRS15TX271y3cut+ZNQrULpcC5kOd+03EfnXMP+/qtr/xvReOa9MhyrDPqtT0inUZ+019f0GU4Z+lyC3tzsmqE9ReLiw7dHk5o9krBfN3X032A+vJt+2Ujd/LdPv3U6GbgNrRC2NXAPssHfAJ8K2T9Ke3XXHTRPe4+hc94tQ3uKoq3xNaT30S731nxzOE2Pr8F8s0+btZdWd1XGzh9Bw9wWA1d2fXc20siheHP8jCyhAVugGzwL3ZA9E/af6G2fzXCsRagX6SG0ksbJaCmxMjgImApc7h3XT2XbDrgjsN+93nbniHq+j3ruvhX4bC9keA+E7D8PTVh5GFoOLXisbseYxMnoWn0HuNU7JsBFXv1Xo146F7Kcb1puYfD5+hyODPGurs/v87Z/Cfwyw/GKpp/6hPQa9Ul7fU2f4ZSlz8XoTUlVuPpwf8K6pxyPU0f/DebDu+mXjdTNf/v0U6ffRj8elgJnonu8BvDvKCD/JYqZlgbKRGmv7rqD5mlvMdLANug69Ju2xtfg5qNd7q355nCaHl+D+WafNmvPRXeLqSZ29v3w7fR2+i1H57A3upa/KrrjZSSa5Ohp0i+79xHUw/V8xmNe5P2VyZpoffiX0RhC6PTGd49BfQillO0UUs8XkXguD5QfiyZ9WkT424ubgHWQ8VwL/MC9+X/mYXR/DkO9b7PRfTrBO843MtTper4uhN3XC5FhzgbO7fru1962qlSzMPqhT3DTqE+a62v6jKYsfS5FfrEKsvjwjyJt/CnD8ermv8F8eJB+2kgd/bdPP3R6KHAGyqqYiu7Hpuj+no90/NcoyL/QKxOnvbrrDpqnvVVo4s4q/HNb42tw99Fp76355mjaEF+D+WZot/ZcdJc2dj4OXf+0zCd+om+/g/vxiO9/hzpePk4JHS9nobTA3YgeS9nNOG/fd5N2rJBzgA1Rz94r3md+b3x3GuTbSCiTvTL+TPJjgUvQkmJnBfbfCPUaBntJu/EfPK5zKIRxBpoIcwD11s5EvYiHki09z/V8szIMpXAd6W2PRgFFkFeBFch4hxouGg0j6vqaPtNRpD6XUd0cAll8+AZ0NFdHXG3DfLjot40MZf89EgXwK4ED0ZKoe3jf+W8ef4qC+wmBcknaq7PuoJnae8lra79pa3wN+eKXuHtrvjkdFl9H0wTfDO3VnovulpEudj4O+LBDG68lvuNlbW/7asT3/ufrQO8cL4uJH3fV/ffPgbI7oh62i9EMvmkZiy5qXdkKCWEBgycyew71zn8MWKurjJ8aFUzROgstNfV3DL45vkjifrhsh4ygiJm6l6DlrT6MUsXuR+MCV+ao0+V8szAC9YIeCVyAHs7dDwWf/yN5MrbFZNd5Hcmi0SBx19f0mUzR+lxBuuXzFtOr1R96390V8t3shPra6MOz2ob58GpsJI19QPHar5o9UaD+C/RWFTR30ir0tg06wXPwR3eS9uquO2ie9t7EG6ufwGKKizPa6Jt98sQvSffWfHMy/YivzTf3UqTuoN3aS+ub08bOE1CHT9q/6SnqjGOYt10FvXO8PIGbk/Z7wPwUyMfR2DcXRlLv3vgrURuPp7edj6JZuicxeIIhX6w7ofF/m3vl56KesyC+oY6JOP5INIfCQjSRURG8FPj3EcAbOetzOV9XRgE3AF9APbnnJOy/Gslvg7LqvK5k0ahP0vU1fcZThj7f8epN4jJ60yUnoTcv16IAKMj8mLry+PAx5P/xVRZZbcN8eDU2ksY+oFjt14Hdve3PAp9ti1KUl3v/38DbBlfAiNNeE3QHzdPeSjpvOOMoKs5oc3wN2X10mntrvjmeMuKXyzDfDP33zdBe7aX1zWlj56LxO6CingtrBffr7nj5dMaDrkFnQpuoB83V3t8slObj8yYwOqbuqJ7XMvF7pw6hk1J2e8z+2zH4oXA/arffS3gF6tn7Jr3n86K3jUqP2hIZblHpaAei8XXPo6XYjkW9jXlwOV8XxgA/Bv4KOAm97YljOHL4Tybsl1XnYVShT8ivUUh3fU2f0ZSlz9VIXq0CFOB0Mx0FOLOBOSnq8Mnjw1egJaXDqNI+8tiG+fD+20ha+4BitV+VRn2GoXmSoDMXx6bA+9Gyuj5TvO2cwGdx2muC7qB52htNuh8BRcUZbYuvIX/8kvbemm+Opqz45bKQz6ZjvjlI0bqD9mrPxTenjZ2Po9g5Xv7X20ZN7LuZt30cilvV6C3gmojvtkO9g/d6jetOk1yOLlYUw2K+K5O10GQ/b6O3DWEim4Aert1jUF9BEyrtgGZq/zRwFVpyrJulqJdyYsh3oJ5iIsq6sg/qpVyA0ufuBr6CHta/zVGvy/mmZSxatm0qcJRXXxITkV7m5ziuK1XpE/JpNO31NX2GU6Y+xwCv5WhbFvL48NeJfqPYRP8N5sOrsJEq/DdU68O7Wd3bbu9t/cB8c3S/76ET5EG89iZ52zrrDpqnvTEMfrNcNm2MryG7j3a5t+abw7H42p26+mZot/ZcfXOa2Pk4ip3j5S5vuzfqKArOqbMmWuL6TbzVrbrneMnKm+gmh/3d5u1zrff/7vXMn0GpQesW1JaiOBf1Gl6KUrbCzs1fnits1vV7kaH+I5qM6YyI46xCRvIBNJa1G7+3NG7FkNlePdNj9tkN9TAuQeJ4CaWtjiR6ffc09fqkPd809a6N3n7s4e2T5qEAnV7Zu2L3ag9ZNepyfU2fvZStz/XQyhX9JI8Pfw61uU7k9d/QPx8+m3Q6bruN1MF/x2UHlFHO52Fve4C3DU68OAHd93cYnM0A8dprim+G9NpLU2/Z2luX/g4/bmN8Ddl8tOu9tfill6bG1+abw3HVXtp6fZrkm9PGzhModo6XJ9B5TUDZQEHOQZ1N1+Fl4xSV8ZKHJ7ztRmgCnThGk208XFy5i4AtUMqTz9bo4j1D75JqQR5DY1K3oHcM2n3A11Ca6PHEn9vNwH7AZ4Dfd303z9vOBD6BbtwC4N8C+/gdaO9E1P9JNOv2q2gJMH+W7R8D/4NSAHdHPbZBkuoN4nK+SfXeAOwCPIiWBhsI2ed8eu/p3uh+3JqivWWQVZ9J5YvWqOv1NX0Opmx9bujV3RSeQNpdl/jrmsc++mUbQfrlw9PoeCjYSNX+eyHSwrPAMWhMe5nlglyDrvnngTuAjb3PvwFMQz+eDyQ8NT1Ke03xzZBee2nqLVt7G9CJW+tOP+LrpPJF+ugs99bil8E0Mb423xxOFu212TdXGTsfhYZmXY4ygxahuXGmoiFGM/wdi8p4yUMwXSuOhWh86xI0U3Naksr9BRJoEH+yr2OJHy+2Ak2mNALYpus7fzzar4lOE/W5GXgB+NuQ7+5GM76/7m3PppOm5rM1Sin9Gb18DC0ptgoZf3fAcJq3vTCkbFy93bicb1y9w+ms174jOt/uvyPpfSisDXwOOaFnUrS3aLLqM035IjWa5fqaPjuUrc8R6ME+P6GNdeIRbxuVzg357KNfttFNv3x4ko6Hgo1U7b9BQfTq6Dpej1ZuAL11XxXyd3ZCOZBmT+g6ziR07lsGPvsjmifgF8Cn6NjSVHSNtyf6R0OU9primyG99pLqLVt7H0QdDEWtRFI2ZcfXacoX6aOzPHstfunQ1PjafHMvWbXXVt9cdez8BBqSNRt1uJyI5ge6HOnmZX/HYQMDA/1vXi/PoOXG4tYE3wSlUH0NpU9thgznVNRD1s0ASvGJKjcKiT44A/JjSDxFcBvq4d8ZCTaJ04DzUBrbbxyOsw66oRcDp7g1sdB6056va71pORoJfDK9bxb6QZTOlqA17y8J7DsJ+G80bnlhTPkXKFejLpg+85FWn1uhe7wz0kgTGAUsQ6m2V0fsE2UfkM2H98M2+uHD16EcvWWpu0obqdp/d/M4elP/AzRGe2zgu1NR2vnu9L5BD5YDvcF8B70R9bkLvd38VsSxNwX+APwLGlefhjppL0u9abSXpd40uGjvM+gH2HoEAumakye+tvilHjbSlPilH5hvzk6WepvimxsTO9ch4wXg53SW7IriaZQKPgs9SPbxPr8SpX76f7PQrM7XJ5R7F42NA/VObUCnNy4vBwH7ovFraQJ20DjXp4lPuwxjdzQ52SVJO5ZYr8v5ltHe1ZBzu5nqHgpROpuL3vgEuRT9QF0Y+CysfJkadcX0mR0Xfe6AUjnnJexXJ95GActuMftE2Qdk8+Fl20a/fHhZ9uFad5U2Ugf/vRN6U/Yk8FX0ltMfh78c6fF54MvA/ugN6O8TykGv/98PpYefTTT+RKIuPxDrpD3XetNqr2rfDHq7PZ/mdLpAvvja4pfqbaRJ8UsZmG8ujjb75sbEznXpeLkepeKMjfi+DMN7D40HW44E9TyawTkrm6De1qvR24UFuPX8rQAORSmZUdchjJ+gmZyfT9rRkaR6s55vGe2dgHqxTyqwThfidJbGuUeVL1qjeTB9ZmcC6fU5jc5kbU3iBqKXT00KgLL48DJsowofXpZ9pKm7LjYygWr99wjgRrSyyrZoTPk26I19kBloXoopaPWKNOUeQOnG66IhKhegADzuh3uW4L5O2ktTbxbtVe2bQfe4ewLbupMnvrb4xeKXCVTnn803F0ubfXNjYue6dLzcg8ZHfTbkuzINb1s0Y/WqAs5hGkqX/wKaBGhv4A3HOu5GqfVxY17rQhHnWxSL0LCExRUcO0lnSc49qXyRGs2L6TMbafX5PpTKPrvc5pTCLaj9u3R9ntZ/g7sPL9o2zIdXYyNV+m/QUo9+ptUyry1jGTyPx5loMsU9UMp62nLzgJXobdzx6K3glQnt8YP7+Y7nYdpzx0V766K5CW4osT1lkCe+tvilGupiH1Ctfzbf3H/qoj0X3TUqdq7LHC+gyYcORhcvyGS0TNMaqCfLH8e1I53UpzPR2NKpdMb1pSl3K/AUmu3aMLKQpLPRaMm4fdEYz+lojPPbKcubRocO+6MxrUlp4XVlBnpb8vXAZ2n8MGTz4WYbRhHsjwI8f0LFE5GmNkVv7c9CS9tOZfAEhknlfB5Aej0MpW7/tPhTMPrA0Si745CqG5KBrPG1xS9GlZhvNtLQqNi5LhkvoHTI8fROvLU+mszITx+ahsbL+eO4zkLpjVMYPJlSUjm8Yz2CYWQnSWdvobTEfYHTUdrc2w7lTaNDh28SvrxeU5gF7In8uE8aP5zVh5ttGEXwKHo7Og6t/jID+er3vH8fA3wJva1c3/sbk1AuyFxk23OxwL6pDEc/8GZW3ZCMZI2vLX4xqsR8s5GGRsXOI6tuQIB30TrY5zB4ObqgAa2HDOhoBhveZ+kYHii1LK6cz3CUFrkhSqVaVvRJGa0njc7momUT76DXuSeVN40ODaYAS4FfVdyOPLyGxgafiTQMyfrO48PNNowiWIR+UD+EUs9PRj9Uh6Gx7WsB93WV2RNNKB1Wrpv5SLPdS5cazeEAtHTroqobkpEs8bWPxS9GVZhvNpKYQsNi5zoNNfIZAB5EM7H7nISc+Uq0VN01yPCWIcPrxje8sHJBDga+hx4KV6FeM8NwJUlnh3mffRJNVOVS3jTafkahOVKmo4kJm86VaGK2+d7/o/Sd14ebbRhN4A4094Dps5msBVyH3qyvqLgteRkgXXwdxOIXo62Yb242jYyd69jxMhy4Aj0gXqy2KYZRCObcjTi+jZbMm19xO4piNFpC8WSaMZmcYRTNcJQBcAT6Ubol1a3oYmRnGHAhcBmwpNqmFEKW+NriF6NNmG9uD42Mnes01MjnPTTD9OZYx4vRXILO/RNo8ifD6GZN4CYGz7bfdN5CacBrYx0vxtBkMnAnWp1rPyywbyrrABejVPY2kDa+tvjFaCvmm9tBY2PnOna8gAL3h6tuhGHkwJy7kYblNPDBkYLXvD/DGIrMoV6LFxjZaONzO018bfGL0VbmYL65DTQ2dq5rx4thNJ05mHM3DMMwDKNZzMHiF8MwjMIxx2oYhmEYhmEYhmEYhlES1vFiGIZhGIZhGIZhGIZREtbxYhiGYRiGYRiGYRiGURLW8WIYhmEYhmEYhmEYhlES/w+uIYc6bWor5AAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial y} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ay(t, x, y, z)) - ─────(Az(t, x, y, z))⎟ + 4⋅⎜─────(Ay(t, x, y, z))\n", " ⎝∂z ∂t ∂y ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂z ∂y ⎠ ⎝∂y ∂t ∂z ∂y ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAAjCAYAAADBsZz2AAAVPElEQVR4nO2dedgdVX3HP4EgS5AEgy27b0QJaIEQaIOsQSTyUG1pFREkJYpLsbLIIggILwikFhCCIhWlBiiWUrCFlor4VGgE7AMFwpYoikRAwipLKmBY0j++M955585yZrtz5r6/z/PcZ5I7c2bOO/P9fc+5Z84yYXR0FMMwDMMwDMMwDMMwDMMfVms7Ayls3nYGgM2Am4ElwD3AX7aaG8PoxzRqAEwF3tR2JmqkDv+32DB8xzQ63AybL0N1bzbNG75jGh1uOuvLPjbYzAI+2HYmgNeAI4F3AXsDC4B1Ws2RYYzFNGoArATOAlZvOyM1UJf/W2wYvmMaHW6GyZehHm82zRu+Yxodbjrry7412GwCfA64sO2MAMtR6yrAU8BzwAbtZccw+jCNGgArgGuA0ZbzUZU6/d9iw/Ad0+hwMyy+DPV5s2ne8B3T6HDTWV/2rcHmYuD0lq69Zsa+HYE1gEcHlBfDiJOlTzCNjnd+AmwMzG45H1Uo6/8WG0YXsDrG+GMYfBma8WbTvOEDptHxRyd92acGmw8BzwI/b+HaS4BXgMfoH684FbgMOBRYNeB8GQZk6xNMo4Y4HTgfmNhyPspQ1v8tNowuYHWM8UuXfRma8WbTvOEDptHxS+d82acGmy8B32jp2vugMYpnA1cAmwbfrwn8KzAfuK2drBlGqj7BNGr0+BXwM2Bu2xkpQVn/t9gwuoDVMcYvXfZlqN+bTfOGL5hGxy+d82VfGmz2AtYG/qel6z8CvIwml3oU2BeYACwEfgRc3lK+DAOS9QmmUaOfy4Hj285EQar4v8WG0QWsjjG+6aIvQ/3ebJo3fMI0Or7plC/70mBzMHB9S9eeBSwGHgY+BTyDusLtAhwA7BfsXwxs00L+inAZmiRrUtsZ6Rg7oC6Ph7adkQTS9And06jpsxxF9PkD9JZo50ZzVC9l/X+YYgMsPsrgs3eHdKGOYdorzrD7MtTvzT5p3hWLjeKYL9eDaa84Q+vLTTfYzEU3bhXwyZRjVkeB8aOG85J27StRK9v2wBxgW+BJ4BZ0f2ZEPvfVcM110XjJVcC/1XC+kB1R4fq3wG8T9h8dXPOgGq85LNyJnsUZ6Pn4QpY+oVsaNX2Wp4g+X0W6OKDhPLmSVwaU9f82YqMp7waLj7L46t0hbdQxipKlPdNdOsPsy9CMNzepeau3+IP5cnXMl8vRNV/eFPgH4HHgd8AyNLfO+vEDm2yw2Qz4GvB/OcdtB0xBrZiDZhdgI9Qd7nm0zNckmg3OUbRE4ipgZo3nPQt4EbgoZX94rTtrvOYwMR/YEDii7YxEaEOf0IxGTZ/VKKLPO4D3NpsdJ1zKgLL+P0zeDRYfVfDRu0Pa8vAiZGnPdJfNsPoydMubweotvmG+XA3z5fJ0xZe3QM/w48DtwHnAL4Ej0UpWU6MHN9VgMwH4DppZ/u9zjn0PEuVjDeUliw3RzXkt+P8+aExjU0HwLiSgG4B7UcG5QQ3n3RJ4H3AVGo+ZxA6ogG5jFa4ucDvwU+AzqPW9DPNQZWF2PVkauD6hGY2aPqtTRJ/3A+9Gle22cC0Dyvr/sHg3WHxUxUfvDmnDw4uQpz3TXTaD8uV51KPPQdTNrd5igPlyFcyXq9GV+vI3gD9A3rUfcAJqPDoPmA6cGT24qQabI4KLfpzkboRRpgO/bigfedyHWlmnAlsBJwEnAm80dL2vowLzaFSogLrjxbkRmVR8mblwMqxVqJtcyCeCff+ccK6vBMdvhbqHvU6vK+zBBfNfNF8uHBOkOyZl/3TUTWxRwfMC3Ervb036/Hfs+CuBzZFR+sCg9QnuGgX3+2v6TKYpfS5Df/M7S+SpLlzLgLL+76t3g/l3lEHFh2/eHTJone4OXAccguZd+DGKv7vRD/A4adrzXXfQPe0tozu+DN3xZnD35yLP1Xw5GfPl4pgv9/BNe8tox5ffjobiLQMujO07FeljLpH5i5pYf3xr9JAXoAeS19VoGvBEA/lwYSlqwboLWAkch5Z2a4KDgD2BC4Lrhl3vZgI/jB17XJCnM4BrUVACnIMC/luoJS7kfcExSTP53wlcGqS7LXat+A/CPIrmy4Vbgu1OKfu/hlpIP1fwvKBl+eL3FlRZ2Ry4Kfb9rcF2bzQZVdsMUp9QTKPgfn9Nn8k0pc/lwXYa6u45aIqUAWX931fvBvPvKIOKD9+8O2SQOv0y+uGxHC3FfC2q1H8PVeZ/gCrLyyNp0rTnu+6ge9rrki9DN7wZivlzkedqvpyM+XIxzJfH4pv22vLl0H9vpL+hcAXK/xx0H/8L6m+wmYgmcXoEtVa6sD7wXM35KMI5wadJ3gycjbqhjgbfhW8Bksba3oPu4yGohW0hup9Hoy5yfx05dhKaFGspyW9MrkJdvQ5BgX5xyb+haL5cuQt1+ZuVsG9/FGwX0LtfRUh6rmejwF4InB7bFwbr7iWu1RSD0CcU1yi43V/TZzpN6fPFYNs3adkAKFoGVPF/H70bzL9DBhkfPnp3yCB0Ohc4GXXv3hM9j2no+c5HOv5z9APh7CBNlvZ81x10T3td8mXw35uhuD+7Plfz5XTMl90xXx6Lj9pz9eWjKDZsajHZk59PD7YPpuz/OWqw2ZKGGmxOQd0QdyV9zGecSYxtWRxGTgM2Ri2KYQEYvgVI61Z/Mpq5ehS1xp6JWgnnMrY1bhPUWpl1D8OC666C+a6SL1deRYG1O7pHjwffTwK+ipa0O6VSjsUE1O3ssGB7OOpCF+UF4BUU/OONMhqNknZ/TZ9u1KnP0HvbWAqyaBngu/+XjQvz78HGx3j27omo8r8SOBAtT7tHsC982/kf6IfBSCRdnvZ81h10T3td8mXw35uhWr0l67maL7thvpyO+XI3tOfqy0cBbyuQv0vJbrCZHGxfSNkffj8l/CI+h80ysseHxT//GEn7J6h17lw0u7Er8R8lSVTJV9u8GwnpAcZO8vY4eivwDmC9hHSPoaW93oa6kN2GxhqujB0XziKd9SZkJgqiOmZAd81XEcKua9EudKeg5c6OJ13QrqyOWl8PA/4OFe5puvsNbpPVLaNfd98J9t2UsG9hmYwPiLIaDcm6v6bPfOrWZ+jred66jHp9tUwZ4OL/bVElLsy/Bx8f49G7QV2rNwG+j97kgialXEVvhZ+w8h39sZ6nPd91B93SXhVfrqLPJuvmbVLFn/Oeq/lyPubL2Zgvd0N7rr48ghqJXD/zcs6Xx4R4vuI9bB5CLVKuhC1nYXfLB9EYvSK8BKyVc0zZfPnAhej+fJ7eGMGQ+9Ds5zNInoDp6ci/D0X3Kk4Y6Gn3cCKa5GoJmuipDlzyVYQwuGehcZ1bofv1E9RKWYU1gO8CH0atyKflHL82bm+gzqe/e9wM1Fp+KSp8oix2OGdbVNFo3v01fWbThD7De523bGudvlq2DHDx/7aoEhdg/j3o+BiP3g2wW7C9PvLd9qhL9Yrg/xsF2+iqIlna64LuoFvac/Xl86lPn03XzdukrD+7PFfz5WzMl/MxX+6G9lx9uW7CRqvJKfvXix3X12CzV8kLr4vGWUH6D4BvBZ8FqGtRyLPkjx0rmy9o5y1B2DJ2ML0ucDdmHD+T/kLlQDRe7wm0BN2RqDUxzlPBdmrCPtByh2tRT/e5Ivkqwm3oOYWtsV9HLah/Q7XntxZwNfCnwLHoDVMWq6EC42GHc5+f8N08VLgsBG52ymF7b7Hq0KjL/TV9ptOUPtcNtr/JOa6KryZds0wZkOX/bcZGlbgA8+9Bx0cb3g3t90KYAGwR/DucIHYaiqkbIsfNDrY3R77L0l4XdAfd0p6rL5+f8N08yumzqbp5V+strs/VfDkd8+V8zJe7oz1XXz6Keuew+Vmw3TJlf7hq1e/nuKlrDpvfAZek7JuJWhVvQRmMd8n8JfDBmvKRxIT8QxphPTQZ0qvoDUeSSEfQj6b4WNt9USvkA6hb3SLgk6hA/Wns2OWohXQ6ycwItncXyXwKRfJVhOfQBFs7ohn/9wIuolqeJ6Fl9PYEPhucL4/pSC+LK1y3KG3pE6pp1PX+mj6TaVKfGwfbh8pmrgRly4As/++id4P5dxvx0YZ3Q7v+HWedYLtDsA0r9Vuh5/1jepVEyNbejGDrs+6gW9rrki+Dn94M5f25yHM1X07GfLk45st+a8/Vl4+i3jlsbgq2c1DjUnTOoDcDu6DeQb9fKSw+h01ZXkYPOulzXXDMpcH/4+vKLwE2o5klxtvkdNRieR7qZpZ0b8Il06Kz2e+KWhAfQw/yadSVdSJakjHOKhRoG6Axu3HCVtoXE/aFLAzOMy/jmKL5cj1vyC3I2L6JJuc6uUJ+J6O3LnsEx7j8GIZea/BNmUcND2U1WuT+mj77aVqfm6Iu4r9wPG8dlC0DfPT/snEBg/fvhbhpeNjjwwfvXnPA6ULuCbYHBNvopJQj6Lm/xtjeE5Ctva74Mrhrz+W8TWqvS74MfnozlPPnos/V6i39mC8Xw3x5uHx5hHrnsHkI/U0jqOdRlNNQA9VlRFYK88GIbwXehLoFLWn4WmtSftxfWtpzgK1RF62QbdADeJT+pXmj3I+EsjUaa7clmjX8BbT0WThL+NXA/6KugbuhFtko1wAfAt5Pv+juDLZnAn+EHv4DwL9Ejgkb7l5Lyed2JfOVd94otwKfRt3TPk9297S8834X2Bm4HXg7veUeo8yn/3nOQc/jWof8NkEVfWalr1OjL1P8/po+x9K0PrdBlYVBj8ktg6v/++7dL1Neh1Xiw0XD4yE+2vbuJUgLvwaOQOP2m0wX5RJ0z/8C+CH6kQ1alnUfNOb/QJK70adpryu+DO7aczlvk9rrki9Du94M9fpzmedq9ZaxmC8Xw3zZfDmPz6LhYxegXkhL0bw/e6KhUCdFD66rh00VlqLJLHfKO7AiS9AY3sfQLNh1pf1jJPIo4WRoRxJpHUvgFTTZ1OrAtmg5tVUoSOPds74YbM9OOM81wJPAXyXsW4Rm0v9tsD2VXre6kG3QJFjX0887KuQr67xxwnGGd5DehdflvKuh5eRAqyOcmvA5jP5KwmRgP2Rkjzrkt26q6DMvfZ0aLXN/TZ89BqHPmXSnl5iL/3fBu6vosEp85Gl4PMRH294NqoCvg+7jFeitHehN/6qEz6k56QD2R39ntBv2AqS7t0a+ewbNhfB94D30utLvie7xDqT/4EjTXld8Gdy1l3feprXXJV+Gdr0Z6vXnMmWu1Vt6mC/3MF92w3w5n4fQsLGFqKHmGDT30QVIM89GD54wOjo62Owlcy7q4vixBq+xOer29WnU5eudqKA4AbXMxRmlN/t0UtonUdCsEUlzPxJfG3wROAuJ7+4C6aYgUZwLfKHG/BQ973XoTcpOKMDrOq8rh6Mg2Z3+luVBkKbP/dFyylsCvwqOXYDGn+5Mb4Z33zVq+qyGqz4nBtffG72N6AJ5/p8WG5Dv377HRUiZ+JhCM1orc+4246Nt747zIOodcDEaiz4psu8E1EV+N/rf2kfTgbpV34H08Ck0yeJxyPfjFe2QaWjukX9Ccwe44JP2ypzXRXtlzuvCMPsylPdml3pLWto18Mefrd5SHvPlHubL9Z3XhaH0ZR962IBa3/al+pjBLB5B3dYXoBa3fYPvL0RLq4WfBWjG7Cty0r6OxgGCWsY2otcK2AbnoXxmdRNNYjc0edtXa85PkfMehCa3u4jsQqXoeV1ZG5njNbRXsKTp82q0RGU4/vNY4KPoDcDTOel90qjpszxF9LkH8i/vC58Ief6fFhuQ79++x0VImfhoKjaKnrvN+PDBu2ehiQ0fRhX4Z+jNNbAC6fEJ4BPAR9Bb11/kpAO9BT0RjYU/ATgFVYDTfhRAb5LVIj8ufdJe0fO6as98uRxlvdml3pKW1id/tnpLOcyXx2K+XM95XRhaX/ZhDhtQ18hFaOzcVQ2cfxaa+GgyarGMB+6K4N8nMjZws9K+gWaXXoEEuaqBfBfhFWAu6m43iezuolH+nd469HWSd97NUVBvgbr9PYBbC2sT+R1BrecLaz6vK1n6DAuH61GBcCKa0f0hh/Q+adT0WZ4R3PU5D70N6hJZ/p8VG5Dt312Ii5Ay8dFUbLic25f4GKFd714duBItW3oJWh55W+DbseNOQuPVZ6M3tq7pbkQaPQP4AP1DROKU+WHgk/ZczltGe+bL5SjrzXn1lqy0Pvmz1VvKMYL5chTz5fLnLcoIQ+rLvvSwARn6kQ2cNwzAy1HQzEEB+GTsuJPQZGaz6S2xlpd2ezRZkQ8VflDBehruhUqb7IOGMnwYTQo1B3ippbwsRUMolrVwbRd9RguHjzC2cOiSRk2f5XDV5x+i531Zw/lpgiT/d/Vu6PfvLsVFiMVHcdr0btDSm2HPrueDvExCvQtCvoQmmtwD/ShwTQf6kbsdqqs95ZCf8IfBYvc/ATDtlWE8+DKU9+a0eotLWp/82WKjOObLYzFfHhxD68s+Ndg8gLov7VfzecsGrkvaGVRbV348czEaC7o+Kswfbzc7reGiz6zCwTTaDF3U5/HBp8pKY22R5P+ulacyFa8ZWFxUoYvx0QQborkJwhUu9kHd2O8M/n8K6lY/m7FzI+SlA3n+99Ab4OvQyiB5fAA9l2eK/Rmdomva67IvQ3lvTqu3uKSdgflzGboWG01hvjx4uqa9zvmyTw02oIr3AWgZsLooG7guabcB7q0xr8b4I09jeYWDadQA6eQN3Gfw95G4/7tUnspWvCwujDq4D/34nApshXp6nYhi8SS0JOxH0RvSDYPPWjnpQCuQ/CdareNSpPP3ozH/RncYBl+G4t6cVW9x8XXzZ6MK5stGFp30ZV/msAl5FTgaOAp1o6yDaAC+FQXg4YwN3D+jF7igVv9XctKCGry2ReNtXwrSGUYRsjQWLxzuRl0qd6M3mZZp1JiCKh8ntJyPqsT9P0/bWf5tcWEMgqXox+hdwEq0WsgV6E3jF4D1gFtjad6LlhFNSgfwFuAGtCRp+EP3XjSR63x6E7IafjOF4fBlKObNefWWPG8G82ejGubLRhpT6Kgv+7Ksd5zJwAs1nu9YVCCsRMsHXoIC93kUuHHCwE1LG/Ix4CuoULkIzaFgGEVJ0thbUIGyCPhM5NirkN52zUkfYhodftZDDRavt52Rmoj6f5q2Xfzb4sIwjLYYNl+GfG92rbdkeTOYPxuG0Qyd9WVfG2wMwzAMwzAMwzAMwzDGLb7NYWMYhmEYhmEYhmEYhjHusQYbwzAMwzAMwzAMwzAMz7AGG8MwDMMwDMMwDMMwDM/4f7V1QVV0wa3dAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle - 4 \\left(- \\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial z\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Az}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial z\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜- ─────(Ax(t, x, y, z)) + ─────(Az(t, x, y, z))⎟ - 4⋅⎜─────(Ax(t, x, y, z\n", " ⎝ ∂z ∂t ∂x ∂t ⎠ ⎝∂z ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", ")) + ─────(φ(t, x, y, z))⎟ + 4⋅⎜─────(Az(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ \n", " ∂z ∂x ⎠ ⎝∂x ∂t ∂z ∂x ⎠ \n", "\n", " \n", " \n", "= 0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGUAAAAnCAYAAACmNfUqAAAW00lEQVR4nO2dedgdZXnGf9lMMGwmgiwSgghhEYiEAkKIBGlIsbRSNtlKKLgQZV/KIvCBLJUgSRBKK6UGqJRSqIKiApcQ2QsNJIQkikUCBCJbAdlCWNI/7hnO5HyzvbOcmTnn+V1XroFzZua858z93PN+7zzv8w7o6+vDMAzDMAzDMAzDMAzD6CwDq25ADINzHr8BMBtYCMwD/iZvgwyjYEyjRpBBVTegJMzLjV7C9Nq9dKtHF4Hp3mgKplWjlgyoaabMfsBzwP05zrEusDYKuLWBOcAY4O3crTOMYjCNGkGGA8cB51fcjiIxLzd6DdNr99KNHg3S6TDgmRznMN0bTcG02t2MRH72XNUNcaWOmTK7A5uQrxMPsBQFHMCLwKvAJ3Oe0zCKxDRqBHkLeBw4oeqGFIR5udGLmF67l27zaNAfpWcCz+c8j+neaAqm1e7mVeB0NDjTKOo2KLMecAZwUYZjh8a8tx0wBHg2S6MMoyBMo0YSNyMt7FR1Q3JiXm70AnFaBdNrN9ItHg2aWvpPwLnA+w7Hme6NJmF9it7iQ+AC4ApgQMVtcaJugzLTgUtwuzmA5gUuA5bQf27gSOAa4AhgRd4GGkZGTKNGWk5DN5MhVTckB+blRrcTp1UwvXYz3eDRAKcAdwAvORxjujeahPUpepPngIfQdNPGUKdBmR2BLYGfZTh2MvBxYBrwY+DT3utDgZ8AF5I/hd4w8mAaNdLyNEqtPbrqhmTEvNzoBaK0CqbXbqfpHg0qdnoYcJXjcaZ7o0lYn6J3uQyYijK3G0GdBmVOBf4147HPAO8AM1EK2p4oZWkWcCdwbQHtM4w8mEYNFy4DTkbFypqGebnRC4RpFUyvvUKTPRqUJXMdsNzxONO90SSsT9G7LEPX9/SqG5KWugzKjAL2Aq7PcOwOwFzgKeBrwMsoJW1n4ADgK977c4Gt8ja0A1yDCk8Nr7ohDWMcSj88ouqGhGAaNcBNow8BbwIHl9qi4jEvb2Fxko06e7lPlFahPno1/bnTCx4N8AngcOBqx+OaoHtXLE7caYJHQ/37FKa9bLjo7xrkdWuX2qKCKHtQ5lD0w60AjozZ76vAfNyrvw9Cnf9rgc8Dk4CtgReAe9H3Gxv4N9/x/FGsiuYnrgB+WtA5QQWnDgH+AVX5b+cE7zMPKvAzu4U56Fqch65PXTCNGj6uGv0F8tA6YF7uhsVJdurq5T5xWoVy9ZoW0182muzRkN6n90F/qC52OHdVui/LoyE+TixGoqm7R0N1fYq0mEdnx0V/i4EF6Leuik+j7PHngXe9Ns1Ag+MrUeagzAbAD9CThCT2BmZn+Iyd0XrzM4HXgD404lh2cPUB66OA2bbA814A/AkVkAvD/6w5BX5mN3EhsA5wTNUNCWAaNYK4aPROYBfgU6W2KBnzcncsTvJRRy/3qUqrLpj+stNEjwY3nz4AuN3x/N3m0RAfJxYj8dTZo6H+Pm0enQ9Xn65qcGtjdA0PR9mV04E/AMcCD9C2bHdZgzIDgB8Br6Dl9uJYBaUizUvYL4x10JfzV/iYjOYPliniLZAIfgU8hm6ERaxvvymwO3ADmv8Yxjh0w/19AZ/XjTwE/Bb4BholrwOmUSOIi0bnII+ekPGzpqCO7K4Zjwfz8ixYnOSnCC+fQn79h1GFVl0w/eWjkx5dFC4+/TFgPPCI42d0k0dDcpxYjMRTZ4+Gevu0eXR+XPR3HxrkGpmwXxn8I5o6dQyaLncqsBsanBkDnB/cuaxBmWO8Dz2c8LSsIP4a8QsyfM58NBI6EtgMOAMV9Pkww7nSchm6AZ6AbhKg1Lh2bkdm074Em19gagVKW/P5O++9/wg51/e8/TdDqVof0EpRdU3Jcm1XGk70jjsx4v0xKGXrbsfzgoJpRcy/37Ttfz2qa7F7hs8qg7pqNMs1M42GU5ZGl6AnPDtnaFNRmJeblwepY5x0miq0OgG4Ba2WsxVwD4rHR4EvtO1r+gvHRX9N8mhw8+lxqDjxYwn7tVNnjy6yP1NkjIDFSVV0Wq/m0aKOfYTH0Xcen6FNefgMmja3GLi87b2zkT4OJVBTaHAJjdgcXeSZ6KLslrD/GG/7XIbPWoRGmR5BFeRPRkuelcVBwETgUu+z/TS4bYE72vY92WvXecDNKLAALkZBeyUaMfPZ3dvnwZDPnYMKsh2Glm4Lfla7SJNwbVca7vW2O0a8/wM0kvltx/OClqxr/21BnY9RwF1tr9/nbf8cuC3D5xVNXTWa5ZqZRsMpU6OL0VOVKjAvF+blLeoaJ52k01r9LvqDYilwJrrWqwL/hTrpt6HYW+rtb/oLx0V/TfFocPdpv6Dp046fU2ePLrI/U2SMgMVJVXRSr+bRLerYR1iMNLA1+h06he/Ft9N/MPAN1P5J6Lf8NRQ/KDMYFVV6hvRLUH0GjYD9MeNnXuz9K5vV0Dr3r6C5idAauQ+b5zoP/RaHoZGwWeg3OQGlrH0zsO9wVGhqEeFPOW4A1vTOdTXww4zfwbVdaXkEpeDtEPLefihgLsX9yQyEX9tpKEBnAee2vfewt606nThIHTXqes1Mo9GUqdGlyCM7jXl5C/NyUec46TSd0uqhwHfQk76J6LpshK7zhUjLf406/tMw/cXhor8meDRk8+mNkTb+lOHz6urRRfZniowRsDipkk7o1Ty6RV37CCtQgec0Pn0c+v3TMpfoAuT+g8onIt7/PRqU2ZSSBmXOQqmF44meJ9fOSG/fD5J2rJhzgPXQ6N+r3mv+yH1YOiUoUA9AN5VV0ajtbSg4gqNm66ORxaVE49+IXOcB52lXWt5DwTEB/Ub+yivDgUvQkm9n5WqxGIBSwI7ytkejYAvyOlqbflQBn9c0XDTqes1Mo+koWqOvUc08WPPylTEvr3ecdCODUad+OXAgWs71i957/tPKn6MO/2jv/01/6UjSXxM8GrL59Lq0fK+uuHp00f2ZImMELE66FfPo5vQRXvLam8RxwIapW6mBs59GvLeGt3094n3/9TX9F9pryiwmfj5X+79/Cxy7PRqB+z6qKJyW4ehHrTNbIkEsYOUias+jkfzPAquHHLcELXu1IUrpuh/N7Vvetp9/Q4+7UW6LgqGIyuFp2+WCn0YWTGk7Cy0F9vdEizItg9BI6VHARehm3R6gPv9HcjG4xWTXeh3JolGXa2YaTaZojYK8Mc2Sk4vpr9kfee/dFfLerJhzmZf3x7y83nGymOL0Xxd2Qx34X6KnsKB6ICvQ0zlodar9P8hNf8mk1V8nPDpPn6NbfTqrRxfZnykyRsDiBMyjzaPTU0Yf4R0CtVtiGI0GhNL+m5LinFEM8LYffbf2TJkncTNrf4TMT6F8As2nc2Ew9X+yejlq5/H0b+t8VDl8LOGFjV4K/PcRwNsh+/jBOizi8wejecALUQGlIkjTLhf8IN0BzaPcDP1eD6CRxDwMAa4D9kWjveck7L8KyU+Nsmq9rmTRqMs1M43GU4ZGQSsHDEmx3wz6p1yORU9orkYdoiBzI85jXm5e3sQ4mUEx+q8Tu3jbWwOvfR6lPL/h/f+63tZfocP0F4+L/or26CL7HHl8ehj5/iArm6weXVR/powYAYuTGZhHg3l0EmX1EZbTylzpFP7gVNTnrt62X79BmS9l/OBVaRU6i7rpXOn9m4nSg3zeAYbGnDtqdKxs/BGsQ2ilo90es/+29L9JHIjmyP0RLc92LBr5a+dFbxuVArsFCuCiUinTtsuF+9G18kdOL0Ojnd8i3zUcBtwIfBk4CT0VimMgMv6nEvbLqvUwmqpRl2tmGo2mLI2CbjhJq2mAOjztTEEdnlnA7BTnAPNyMC9vYpzMCHltCu76r0qjQXy9buxt/RpNGwGfQMsD++zqbWd7W9NfNC76K8Oji+xz5PHpZWhZ7DCq1P8A8nl0Uf2ZomMELE6gOI+G+vi0ebRoQh9hKOkGb46juJoyv/O2UYXgN/G2H9WcKaqmzLvAVRHvbYtGDu9FDWxPs3wD3dSiGBDzXtmsjooMvYeeSoSJbTS62bbPc90TjRguQCludwNHohvkb9v2XYpGMscQzlhv+6hL4yNwaZcLr6LCVduhqvlfAq4gX5uHoyXmJgJTvfMlMQZpZm6Oz3WlqRp1uWam0XDK1ugw4M2sjcuAebl5eRPjpCiq1GgUH/e247yt31nfDF33e2h1/kx/4bjqr84eDfl8+i2in9I31aOhuP7MWG9bRIyAxUkZ1M2nzaPr30cYxsoZQ1EcR3E1Ze7ytpPQAFKwhs9qwM5ooOijVbjaa8pk5R10ocP+3eLtc7X3/+3rsj+L0pVGFNSWIjkXjSxORylfYd/PX04sWBF+PBrtW4IuxksoxXQw4WvCr0DB8kk0X7Ydf0Q1rlr+LO88U2L2cW1X2vP63IvM6Z9Rwavv5GjvGuhJyRe9fdIEKLRGbu+K3at7yKpRn7TXzDTan05odC20skanMC83L4fmxUkZxGV9deL4ed72AG8bLP44Gl3/91k5C8L0158s+quzR0M+n34etblu5O3LQDH9maJiBNzjJO15fdJ+3zTnLTtOyiKPz5pHu5/Xp2qPBjf9jSBdGYrRFFdT5kn0vUajLKIg56CBqGsIZFoWlSmThye97fqoYE8cQ8k+xy7u2IuBzVHKlM9W6Ed8lv7LcAV5HM173Rw9Jd4UVdt+HS0N5lfYvhH4H5SqtwsaOQ1yE7APsAfwv23vzfG25wOfQxdwAfCfgX38Abb3I9q5TcZ2JZ03yH3A11Fq7fHEX8+k814H7AQ8hJYx6wvZ50L6X9NJ6HrcnKK9ZZBHo3HHF6nRYAqfyzUzja5MJzS6nnf+JmBeLixOVqaJXr4Q6eA54Bg0b76Tx4MyIY4H9gbuADbwXv8mMBkNgB5I/zR309/KZNFft3o0yKeHoj9S4n7XpvVloJj+TBExAtnixCVGIP33TXPesuOkDPL4rHl0sz0a3PS3Lq0+aieZiqZ7XYoyihahWjwT0bSlM4I7F5Upk4dgmlccC9Fc2CWocrQLScf+GRJqEL/Y2LHEzxdehgo4DQK2RkuNrUDB1i6A07zttJDz3ITWUf/bkPfuRtXo3/K2Z9NKcfPZCk0fuJX+fDZHu+LO244/r+9holNr05x3IK1157dH37f931H0D9A1gK8gM3o2RXuLJo9Gk44vUqNBXK6ZabRFJzQ6CN3k5ybsVxfMy4XFSYumevlk9BRwGvBjtKoESHcntO07FrV/ixTH7+ftG0yPnol015698DKqR/BL4Au00t0not96HOF/SJj+WmTRXzd7NMBj3jZq+gQ0sy8DxfRn8sYIZI8TlxiB9N836bxlx0lZ5PFp8+j+NMWjwU1/n0KDxPMT9iuDJ9E0r1loMOZEVIvoUqSZV4I7D+jr6+ts88J5Fi2NFre2+SiUfvV1lHq1CQq8JWht9EsC+44F/hvNO10Yc+wQJPxg5fzHkYCq4DTgApQC5zI3b010Yb8PnFJge1zPewt6+rEjCtSizpuWo5HQJ9B/BLgTROlsP7S85abA096+M9F8z51ozXMMO/4FytVo2mvmYxrNh4tGt0TXekfkZ03AvFxYnOSjai8P8gR6uv9D9LTyffT00+cu9CTz2ymOH4B+z0eBr6Fihiej+0DcU7yNgD8A/47m8Cdh+stOt3v0EOA1NKXiyoh9onwW0vVnqujLQGf6M2tSjxiBdN83y3nTUCePhnw+bR7dLI8GN/3tgQbO1qJtEKRu1CFTBuAXtJYWi+IZlKo4E3X89/RefwCNvAeZjm42CxOO/QDNuwONYK1La8SuCqajtsalb4axCyqOdknSjiWe9yBgLzQXMOlmWEZ7V0EmdxPV3SCidHYjGqH151yeBHwVjdS/lHB8mRp1uWY+ptHsuGp0O5QSOidpxxphXi4sTrJTtZfvgDIfnkKd8pdpzfNv1+g+KFX87JTHrwBOR/PQT0WDl18mOa3aL2yatvNu+stGL3j0e+gP1PEx+0T5LKTrz3S6LwOd68/UIUYg/fftRo+GfD5tHp3vvE3rI4xD17vWAzJQj5oyoNSx21HRm7DUxR1QMaE10Mhie/BNDezrB9++KY79EM0HfgMJa0Uh3yY7y4BDUepb1G8Rxs+Irqafh6TzjkLBuTFKw1tAupHQMto7Go1yzyr4vGmJ05lv8rciYz8dVUJ/MsXxRWs06zXzMY1mZzRuGp1Mq1BcUzAvFxYn2RlNdV4+CLgeLfF5FRoQ3Br4F+/9B9ETvxHoml6EOtWvpDweFB8PA+cBf0n/qRxhuHb4TX/ZGE33ezSohsNFEe/F+Swk92c61ZeBavozVcUIZPu+3ebRkM+nzaOznbcuHg3u+ptE/4LntaQumTL3IEP/q5D3/AC6Fol+EgqgF7z3H0QiGYHmjIUFX9SxeK/Po/pOvM/dqCpz2gCtksmo+NK+qNDSJODtitqyCBWHWlzBZ6fRWdDk92dlk086vkiNFnHNTKPZcNHox1DK5azymlMK5uUtLE6yUaWX74ye4M9EUzz6UIfZn4s+B1iOMiSOR08AL3c4HvQH7Dao//Viynb5Hf65ab8Ipr8s9IJHA/wEtX+nttfT+CxE92c62ZcB6880IU7KII9Pm0dnoy7aAzf9jUC1aq4rsT2FUZeaMqCRt4PRTS7IBHQDWBU9jfDn8G6PbgpD0dJhe6G5eVPQHNX3UhwLEtfTqPq2YWQhjc52QyPGq6AbxSMOx5tGe4/90ZzZpKlAdcS83Ggq+6POnl8M8kSkp43Qk37Q4OHDwGHoyeHPHY7fBvgNKmi6N9L8X5TxRYzSabJHg1b9GAV8I/BaGp+F6P6M9WWMTpDHp82je4ujUfbeIVU3JA11yZQBpb2vTf+iX+ug4kl+euhkNA/Pn8P7LkoX2wulUZ6EOvFpjsX7vMcwjOwk6WwbVIF9KiqOdb7j8abR3uNbhC8L2ATMy42mMh89RR2JVhE7A2nxw8A+D6D4fICVB2SSjt8Q1VyaBlyNahXsQXP/qO91muzRoEyB3ZBX+6Tx2bj+jPVljE6Qx6fNo3uHgcCR9P+bq7bUpaYMqAjYVJTKFVxCLxhAa6EAOpr+wXcsWic+Kviijh2I0ivXQ6lYrxX0fYzeIU5n7Sb/KEpv3IVWgaoknZpGe4tdgaXArytuR1bMy42msgh14B5B6e8no0HGIHOR7tqXXI07fgTwK6Rpv4P4GKpHciHxRVeN+rErzfZogDdRIdMzkZdCss8m9WesL2N0gjw+bR7dOxyAlgdfVHVD0lKn6Us+fcBDyPh9TkLGvhwtr3dV2zGHea9tg4oPBUk69mDge+gmcQUaWTUMV8J0NgK4D80bDaYI34D0Nj7heB/TaO8wBM33n4IKJDaZPszLje7jDrSEqumrN+kmjwbV2riSVi2MKJ9N25+xvoxRB8yne5vVgWvQynDLKm5Lauo4KDMQVcXuI32BJQs+wzC6ge+iZf7mVtyOIjAvN7qFgejJ/xHoD84tgFcrbZFRFd3k0aCaGdNRxkATCo4aRhTm0wbAAJTNNwNYUm1T3KjT9CWfD1G17M2I78gHg+9zqHiTYRhGU1kNPXWcn7RjQzAvN7qFCcCdwO/QUu3W0e9Nus2jQbW8TkFLWNugjNFkzKcNgDXRkuhLK26HM3UclAHdJOYl7GPBZxhGN/EG3dXZB/NyozuYTb0WRjCqoRs9GlRf5s2qG2EYOZmN+bTR4D5kXQdl0jAbCz7DMIymMxvzcsMwDMMwDKNHsY6wYRiGYRiGYRiGYRhGBdigjGEYhmEYhmEYhmEYRgXYoIxhGIZhGIZhGIZhGEYF2KCMYRiGYRiGYRiGYRhGBfw/7jqW/rK70oUAAAAASUVORK5CYII=\n", "text/latex": [ "$\\displaystyle - 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} - \\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)}\\right) + 4 \\left(\\frac{\\partial^{2}}{\\partial y\\partial t} \\operatorname{Ax}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) - 4 \\left(\\frac{\\partial^{2}}{\\partial x\\partial t} \\operatorname{Ay}{\\left(t,x,y,z \\right)} + \\frac{\\partial^{2}}{\\partial y\\partial x} φ{\\left(t,x,y,z \\right)}\\right) = 0$" ], "text/plain": [ " ⎛ 2 2 ⎞ ⎛ 2 \n", " ⎜ ∂ ∂ ⎟ ⎜ ∂ \n", "- 4⋅⎜─────(Ax(t, x, y, z)) - ─────(Ay(t, x, y, z))⎟ + 4⋅⎜─────(Ax(t, x, y, z))\n", " ⎝∂y ∂t ∂x ∂t ⎠ ⎝∂y ∂t \n", "\n", " 2 ⎞ ⎛ 2 2 ⎞ \n", " ∂ ⎟ ⎜ ∂ ∂ ⎟ \n", " + ─────(φ(t, x, y, z))⎟ - 4⋅⎜─────(Ay(t, x, y, z)) + ─────(φ(t, x, y, z))⎟ = \n", " ∂y ∂x ⎠ ⎝∂x ∂t ∂y ∂x ⎠ \n", "\n", " \n", " \n", "0\n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "E*3.B*3: 0\n" ] } ], "source": [ "for i in range(3):\n", " for symbol, even_odd in {\"e\": True, \"\": False}.items():\n", " for n, p in enumerate(p4):\n", " for p in p4:\n", " homogeneous = euler_equations(\n", " dif(norm_squared(vector_q(Dq(conj(EM_potential, conj_type=i, even=even_odd), [t, x, y, z], conj=True, conj_type=i, even=even_odd, reverse=False))),\n", " norm_squared(vector_q(Dq(conj(EM_potential, conj_type=i, even=even_odd), [t, x, y, z], conj=True, conj_type=i, even=even_odd, reverse=True)))).t, p)[0]\n", " display(homogeneous)\n", " print(f\"E*{n}{symbol}.B*{n}{symbol}: {homogeneous.lhs.subs(simpler)}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This makes sense. The Lagrangian after all remains the difference of the norm squared of two 3-vector-scalars that are of the same size, just pointed in different directions. Do the calculus of variations on a zero, stay at zero. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Takeaways\n", "\n", "Every approach to deriving the Maxwell equations I have seen uses the anti-symmetric rank-2 field strength tensor $F^{\\mu\\nu}$ which neatly puts electric and magnetic fields in their six separate places. This notebook provides an alternative.\n", "\n", "What is electromagnetism? It starts from a space-time potential, every single possible way of making something in EM happen. Make available every possible variation in those potentials by taking all possible space-time derivatives. It is the completeness of both the potential and changes in the potential that feels satisfying. Restrict the investigation to only those where the scalar field is zero. I wish I could say more about that specific step, but for now I just acknowledge the choice gets made. It is required to use both a derivative on the left of the potential and the derivative operator on the right. There is a coupling between the potential and a current density. To these terms one applies the Euler-Lagrange equations, a way of finding functions that are at extremums. That is the way to generate the Maxwell source equations, Gauss's law and Ampere's law together.\n", "\n", "The way to generate the homogeneous Maxwell equations follows the same approach. Start this time with something that must always be zero: the difference between the norm squared of the fields with the derivative on the left and the norm squared with the derivative on the right. The result of that algebra is the dot product of the electric and magnetic wave. For a free traveling EM wave, those fields are at 90 degrees to each other so the dot product is zero. It is not a well-known result, but putting the dot product of these two fields into the Euler-Lagrange equations results in the no magnetic monopoles law and Faraday's law.\n", "\n", "The conjugate symmetries indicated conservation laws based on Emmy Noether's theorem. Because the symmetries are discrete, that means the conserved quantity is discrete. I think these symmetries are all about the conservation of integer spin for the conjugate, and half integer spin for first and second conjugates. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }