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1. Introduction. The richness of the theory of functions over the complex field
makes it natural to look for a similar theory for the only other non-trivial real asso-
ciative division algebra, namely the quaternions. Such a theory exists and is quite
far-reaching, yet it seems to be little known. It was not developed until nearly a cen-
tury after Hamilton’s discovery of quaternions. Hamilton himself (1) and his principal
followers and expositors, Tait (2) and Joly (3), only developed the theory of functions
of a quaternion variable as far as it could be taken by the general methods of the theory
of functions of several real variables (the basic ideas of which appeared in their mod-
ern form for the first time in Hamilton’s work on quaternions). They did not delimit a
special class of regular functions among quaternion-valued functions of a quaternion
variable, analogous to the regular functions of a complex variable.

This may have been because neither of the two fundamental definitions of a regular
function of a complex variable has interesting consequences when adapted to quater-
nions; one is too restrictive, the other not restrictive enough. The functions of a quater-
nion variable which have quaternionic derivatives, in the obvious sense, are just the
constant and linear functions (and not all of them); the functions which can be repre-
sented by quaternionic power series are just those which can be represented by power
series in four real variables.

In 1935, R. Fueter (4) proposed a definition of ‘regular’ for quaternionic functions
by means of an analogue of the Cauchy-Riemann equations. He showed that this defi-
nition led to close analogues of Cauchy’s theorem, Cauchy’s integral formula, and the
Laurent expansion (5). In the next twelve years Fueter and his collaborators developed
the theory of quaternionic analysis. A complete bibliography of this work is contained
in (6), and a simple account (in English) of the elementary parts of the theory has been
given by Deavours (7).

The theory developed by Fueter and his school is incomplete in some ways, and
many of their theorems are neither so general nor so rigorously proved as present-day
standards of exposition in complex analysis would require. The purpose of this paper
is to give a self-contained account of the main line of quaternionic analysis which
remedies these deficiencies, as well as adding a certain number of new results. By
using the exterior differential calculus we are able to give new and simple proofs of
most of the main theorems and to clarify the relationship between quaternionic analysis
and complex analysis.

In Section 2 of this paper we establish our notation for quaternions, and introduce
the quaternionic differential forms dq, dq ∧ dq and Dq, which play a fundamental role
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in quaternionic analysis. The 1-form dq and the 3-form Dq have simple geometrical
interpretations as the tangent to a curve and the normal to a hypersurface, respectively.

Section 3 is concerned with the definition of a regular function. The remarks in the
second paragraph of this introduction, about possible analogues of the definition of a
complex-analytic function, are amplified (this material seems to be widely known, but
is not easily accessible in the literature); then Fueter’s definition of a regular function,
by means of an analogue of the Cauchy-Riemann equations, is shown to be equivalent
to the existence of a certain kind of quaternionic derivative. Just as, for a function
f : C → C, the Cauchy-Riemann equation ∂f/∂x + i ∂f/∂y = 0 (the variable
being z = x + iy) is equivalent to the existence of a complex number f ′(z) such that
df = f ′(z) dz, so for a function f : H → H, the Cauchy-Riemann-Fueter equation

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 0 (1.1)

(the variable being q = t + ix + jy + kz) is equivalent to the existence of a quaternion
f ′(q) such that d(dq ∧ dqf) = Dq f ′(q).

Section 4 is devoted to the quaternionic versions of Cauchy’s theorem and Cauchy’s
integral formula. If the function f is continuously differentiable and satisfies (1.1),
Gauss’s theorem can be used to show that

∫

∂C

Dq f = 0, (1.2)

where C is any smooth closed 3-manifold in H, and that if q0 lies inside C,

f(q0) =
1

2π2

∫

∂C

(q − q0)
−1

|q − q0|2
Dq f(q). (1.3)

We will show that Goursat’s method can be used to weaken the conditions on the con-
tour C and the function f , so that C need only be assumed to be rectifiable and the
derivatives of f need not be continuous. From the integral formula (1.3) it follows,
as in complex analysis, that if f is regular in an open set U then it has a power se-
ries expansion about each point of U . Thus pointwise differentiability, together with
the four real conditions (1.1) on the 16 partial derivatives of f , are sufficient to ensure
real-analyticity.

In Section 5 we show how regular functions can be constructed from functions
of more familiar type, namely harmonic functions of four real variables and analytic
functions of a complex variable, and how a regular function gives rise to others by
conformal transformation of the variable.

The homogeneous components in the power series representing a regular function
are themselves regular; thus it is important to study regular homogeneous polynomials,
the basic functions from which all regular functions are constructed. The corresponding
functions of a complex variable are just the powers of the variable, but the situation
with quaternions is more complicated. The set of homogeneous regular functions of
degree n forms a quaternionic vector space of dimension 1

2 (n + 1)(n + 2); this is true
for any integer n if for negative n it is understood that the functions are defined and
regular everywhere except at 0. The functions with negative degree of homogeneity
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correspond to negative powers of a complex variable and occur in the quaternionic
Laurent series which exists for any function which is regular in an open set except at
one point. Fueter found two natural bases for the set of homogeneous functions which
play dual roles in the calculus of residues. (He actually only proved that these bases
form spanning sets.) In Section 6 we study homogeneous regular functions by means of
harmonic analysis on the unit sphere in H, which forms a group isomorphic to SU(2);
this bears the same relation to quaternionic analysis as the theory of Fourier series does
to complex analysis. In Section 7 we examine the power series representing a regular
function and obtain analogues of Laurent’s theorem and the residue theorem.

Many of the algebraic and geometric properties of complex analytic functions are
not present in quaternionic analysis. Because quaternions do not commute, regular
functions of a quaternion variable cannot be multiplied or composed to give further reg-
ular functions. Because the quaternions are four-dimensional, there is no counterpart
to the geometrical description of complex analytic functions as conformal mappings.
The zeros of a quaternionic regular function are not necessarily isolated, and its range
is not necessarily open; neither of these sets need even be a submanifold of H. There is
a corresponding complexity in the structure of the singularities of a quaternionic regu-
lar function; this was described by Fueter (9), but without giving precise statements or
proofs. This topic is not investigated here.

2. Preliminaries. We denote the four-dimensional real associative algebra of the
quaternions by H, its identity by 1, and we regard R as being embedded in H by
identifying t ∈ R with 1 ∈ H. Then we have a vector space direct sum H = R ⊕ P ,
where P is an oriented three-dimensional Euclidean vector space, and with the usual
notation for three-dimensional vectors the product of two elements of P is given by

ab = −a.b + a × b. (2.1)

We choose an orthonormal positively oriented basis {i, j, k} for P , and write a
typical quaternion as

q = t + ix + jy + kz (t, x, y, z ∈ R). (2.2)

On occasion we will denote the basic quaternions i, j, k by ei and the coordinates
x, y, z by xi (i = 1, 2, 3) and use the summation convention for repeated indices.
Then (2.2) becomes

q = t + eixi (2.3)

and the multiplication is given by

eiej = −δij + εijkek. (2.4)

We will also sometimes identify the subfield spanned by 1 and i with the complex field
C, and write

q = v + jw (v, w ∈ C) (2.5)

where v = t + ix and w = y − iz. The multiplication law is then

vj = jv̄ (2.6)
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for all v ∈ C.
We write

q̄ = t − ix − jy − kz, (2.7)

|q| =
√

qq̄ =
√

t2 + x2 + y2 + z2 ∈ R, (2.8)

Re q = 1
2 (q + q̄) = t ∈ R, (2.9)

Pu q = 1
2 (q − q̄) = ix + jy + kz ∈ P, (2.10)

Un q =
q

|q| ∈ S, (2.11)

where S is the unit sphere in H; and

〈q1, q2〉 = Re(q1q̄2) = t1t2 + x1x2 + y1y2 + z1z2. (2.12)

Then we have
q1q2 = q̄2 q̄1, (2.13)

|q1q2| = |q1| · |q2|, (2.14)

Re(q1q2) = Re(q2q1) (2.15)

and
q−1 =

q̄

|q|2 . (2.16)

Note that if u1 and u2 are unit quaternions, i.e. |u1| = |u2| = 1, the map q 7→
u1qu2 is orthogonal with respect to the inner product (2.12) and has determinant 1;
conversely, any rotation of H is of the form q 7→ u1qu2 for some u1, u2 ∈ H (see, for
example, (10), chap. 10).

The inner product (2.12) induces an R-linear map Γ : H
∗ → H, where

H
∗ = HomR(H, R)

is the dual vector space to H, given by

〈Γ(α), q〉 = α(q) (2.17)

for α ∈ H
∗, q ∈ H. Since {1, i, j, k} is an orthonormal basis for H, we have

Γ(α) = α(1) + i α(i) + j α(j) + k α(k).

The set of R-linear maps from H to H forms a two-sided vector space over H of di-
mension 4, which we will denote by F1. It is spanned (over H) by H

∗, so the map Γ
can be extended by linearity to a right H-linear map Γr : F1 → H and a left-linear map

Γl : F1 → H.

They are given by

Γr(α) = α(1) + i α(i) + j α(j) + k α(k) (2.18)
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and
Γl(α) = α(1) + α(i) i + α(j) j + α(k) k (2.19)

for any α ∈ F1.
The geometric terminology used in this paper is as follows:
An oriented k-parallelepiped in H is a map C : Ik → H, where Ik ⊂ R

k is the
closed unit k-cube, of the form

C(t1, ..., tk) = q0 + t1h1 + ... + tkhk.

q0 ∈ H is called the original vertex of the parallelepiped, and h1, ..., hk ∈ H are called
its edge-vectors. A parallelepiped is non-degenerate if its edge-vectors are linearly
independent (over R). A non-degenerate 4-parallelepiped is positively oriented if

v(h1, ..., h4) > 0,

negatively oriented if v(h1, ..., h4) < 0, where v is the volume form defined below
(equation (2.26)).

We will sometimes abuse notation by referring to the image C(Ik) as simply C.
Quaternionic differential forms. When it is necessary to avoid confusion with other

senses of differentiability which we will consider, we will say that a function f : H →
H is real-differentiable if it is differentiable in the usual sense. Its differential at a point
q ∈ H is then an R-linear map dfq : H → H. By identifying the tangent space at each
point of H with H itself, we can regard the differential as a quaternion-valued 1-form

df =
∂f

∂t
dt +

∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz. (2.20)

Conversely, any quaternion-valued 1-form θ = a0dt + aidxi(a0, ai ∈ H) can be
regarded as the R-linear map θ : H → H given by

θ(t + xiei) = a0t + aixi (2.21)

Similarly, a quaternion-valued r-form can be regarded as a mapping from H to the
space of alternating R-multilinear maps from H× ...×H (r times) to H. We define the
exterior product of such forms in the usual way: if θ is an r-form and φ is an s-form,

θ ∧ φ(h1, ..., hr+s) =
1

r!s!

∑

ρ

ε(ρ)θ(hρ(1), ..., hρ(r))φ(hρ(r+1), ..., hρ(r+s)), (2.22)

where the sum is over all permutations ρ of r + s objects, and ε(ρ) is the sign of ρ.
Then the set of all r-forms is a two-sided quaternionic vector space, and we have

a(θ ∧ φ) = (aθ) ∧ φ,

(θ ∧ φ)a = θ ∧ (φa),

(θa) ∧ φ = θ ∧ (aφ)











(2.23)

for all quaternions a, r-forms θ and s-forms φ. The space of quaternionic r-forms
has a basis of real r-forms, consisting of exterior products of the real 1-forms dt, dx,
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dy, dz; for such forms left and right multiplication by quaternions coincide. Note that
because the exterior product is defined in terms of quaternion multiplication, which is
not commutative, it is not in general true that θ∧ φ = −φ∧ θ for quaternionic 1-forms
θ and φ.

The exterior derivative of a quaternionic differential form is defined by the usual
recursive formulae, and Stokes’s theorem holds in the usual form for quaternionic in-
tegrals.

The following special differential forms will be much used in the rest of the paper.
The differential of the identity function is

dq = dt + i dx + j dy + k dz; (2.24)

regarded as an R-linear transformation of H, dq is the identity mapping. Its exterior
product with itself is

dq ∧ dq = 1
2εijk ei dxj ∧ dxk = i dy ∧ dz + j dz ∧ dx + k dx ∧ dy, (2.25)

which, as an antisymmetric function on H×H, gives the commutator of its arguments.
For the (essentially unique) constant real 4-form we use the abbreviation

v = dt ∧ dx ∧ dy ∧ dz, (2.26)

so that v(1, i, j, k) = 1. Finally, the 3-form Dq is defined as an alternating R-trilinear
function by

〈h1, Dq(h2, h3, h4)〉 = v(h1, h2, h3, h4) (2.27)

for all h1, ..., h4 ∈ H. Thus Dq(i, j, k) = 1 and Dq(1, ei, ej) = −εijkek. The
coordinate expression for Dq is

Dq = dx ∧ dy ∧ dz − 1
2εijk ei dt ∧ dxj ∧ dxk

= dx ∧ dy ∧ dz − i dt ∧ dy ∧ dz − j dt ∧ dz ∧ dx − k dt ∧ dx ∧ dy.
(2.28)

Geometrically, Dq(a, b, c) is a quaternion which is perpendicular to a, b and c and has
magnitude equal to the volume of the 3-dimensional parallelepiped whose edges are a,
b and c. It also has the following algebraic expression:

PROPOSITION 1. Dq(a, b, c) = 1
2 (cāb − bāc).

Proof. For any unit quaternion u, the map q 7→ uq is an orthogonal transformation
of H with determinant 1; hence

Dq(ua, ub, uc) = u Dq(a, b, c).

Taking u = |a|a−1, and using the R-trilinearity of Dq, we obtain

Dq(a, b, c) = |a|2a Dq(1, a−1b, a−1c). (2.29)

Now since Dq(1, ei, ej) = −εijkek = 1
2 (ejei − eiej), we have by linearity

Dq(1, h1, h2) = 1
2 (h2h1 − h1h2) (2.30)
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for all h1, h2 ∈ H. Hence

Dq(a, b, c) = 1
2 |a|2a(a−1ca−1b − a−1ba−1c)

= 1
2 (cāb − bāc). 2

Two useful formulae were obtained in the course of this proof. The argument lead-
ing to (2.29) can be generalized, using the fact that the map q 7→ uqv is a rotation for
any pair of unit quaternions u, v, to

Dq(ah1b, ah2b, ah3b) = |a|2|b|2a Dq(h1, h2, h3)b; (2.31)

and the formula (2.30) can be written as

1cDq = − 1
2 dq ∧ dq, (2.32)

where c denotes the usual inner product between differential forms and vector fields
and 1 denotes the constant vector field whose value is 1.

Since the differential of a quaternion-valued function on H is an element of F1, the
map Γr can be applied to it. The result is

Γr(df) =
∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
. (2.33)

We introduce the following notation for the differential operator occurring in (2.33),
and for other related differential operators:

∂̄lf = 1
2Γr(df) =

1

2

(

∂f

∂t
+ ei

∂f

∂xi

)

,

∂lf =
1

2

(

∂f

∂t
− ei

∂f

∂xi

)

,

∂̄rf = 1
2Γl(df) =

1

2

(

∂f

∂t
+

∂f

∂xi

ei

)

,

∂rf =
1

2

(

∂f

∂t
− ∂f

∂xi

ei

)

,

∆f =
∂2f

∂t2
+

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.







































































(2.34)

Note that ∂l, ∂̄l, ∂r and ∂̄r all commute, and that

∆ = 4∂r∂̄r = 4∂l∂̄l. (2.35)

3. Regular functions. The requirement that a function of a complex variable z =
x + iy should be a complex polynomial, i.e. a sum of terms anzn, picks out a proper
subset of the polynomial functions f(x, y) + ig(x, y). The corresponding requirement
of a function of a quaternion variable q = t + ix + jy + kz, namely that it should
be a sum of monomials a0qa1...ar−1qar, places no restriction on the function; for in
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contrast to the complex case the coordinates t, x, y, z can themselves be written as
quaternionic polynomials:

t =
1

4
(q − iqi − jqj − kqk),

x =
1

4i
(q − iqi + jqj + kqk),

y =
1

4j
(q + iqi − jqj + kqk),

z =
1

4k
(q + iqi + jqj − kqk),











































(3.1)

and so every real polynomial in t, x, y, z is a quaternionic polynomial in q. Thus
a theory of quaternionic power series will be the same as a theory of real-analytic
functions on R

4.
On the other hand, the requirement that a function of a quaternion variable should

have a quaternionic derivative, in the obvious sense, is too strong to have interesting
consequences, as we will now show.

Definition. A function f : H → H is quaternion-differentiable on the left at q if the
limit

df

dq
= lim

h→0
[h−1{f(q + h) − f(q)}]

exists.
THEOREM 1. Suppose the function f is defined and quaternion-differentiable on

the left throughout a connected open set U . Then on U , f has the form

f(q) = a + qb

for some a, b ∈ H.
Proof. From the definition it follows that if f is quaternion-differentiable on the left

at q, it is real-differentiable at q and its differential is the linear map of multiplication
on the right by ∂f/∂q:

dfq(h) = h
df

dq
,

i.e.

dfq = dq
df

dq
. (3.2)

Equating coefficients of dt, dx, dy and dz gives

df

dq
=

∂f

∂t
= −i

∂f

∂x
= −j

∂f

∂y
= −k

∂f

∂z
. (3.3)

Put q = v + jw, where v = t+ ix and w = y− iz, and let f(q) = g(v, w)+ jh(v, w),
where g and h are complex-valued functions of the two complex variables v and w;
then (3.3) can be separated into the two sets of complex equations

∂g

∂t
= −i

∂g

∂x
=

∂h

∂y
= i

∂h

∂z
,
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∂h

∂t
= i

∂h

∂x
= −∂g

∂y
= i

∂g

∂z
.

In terms of complex derivatives, these can be written as

∂g

∂v̄
=

∂h

∂w̄
=

∂h

∂v
=

∂g

∂w
= 0, (3.4)

∂g

∂v
=

∂h

∂w
(3.5)

and
∂h

∂v̄
= − ∂g

∂w̄
. (3.6)

Equation (3.4) shows that g is a complex-analytic function of v and w̄, and h is a
complex-analytic function of v̄ and w. Hence by Hartogs’s theorem ((11), p. 133) g
and h have continuous partial derivatives of all orders and so from (3.5)

∂2g

∂v2
=

∂

∂v

(

∂h

∂w

)

=
∂

∂w

(

∂h

∂v

)

= 0.

Suppose for the moment that U is convex. Then we can deduce that g is linear in w̄, h
is linear in w and h is linear in v̄. Thus

g(v, w) = α + βv + γw̄ + δvw̄,

h(v, w) = ε + ζv̄ + ηw + θv̄w,

where the Greek letters represent complex constants. Now (3.5) and (3.6) give the
following relations among these constants:

β = η, ζ = −γ, δ = θ = 0.

Thus
f = g + jh = α + jε + (v + jw)(β − jγ)

= a + qb,

where a = α+jε and b = β−jγ; so f is of the stated form if U is convex. The general
connected open set can be covered by convex sets, any two of which can be connected
by a chain of convex sets which overlap in pairs; comparing the forms of the function
f on the overlaps, we see that f(q) = a + qb with the same constants a, b throughout
U . 2

We will now give a definition of ‘regular’ for a quaternionic function which is
satisfied by a large class of functions and which leads to a development similar to the
theory of regular functions of a complex variable.

Definition. A function f : H → H is left-regular at q ∈ H if it is real-differentiable
at q and there exists a quaternion f ′

l (q) such that

d(dq ∧ dq f) = Dq f ′
l (q). (3.7)

It is right-regular if there exists a quaternion f ′
r(q) such that

d(f dq ∧ dq) = f ′
r(q) Dq.
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Clearly, the theory of left-regular functions will be entirely equivalent to the theory
of right-regular functions. For definiteness, we will only consider left-regular func-
tions, which we will call simply regular. We write f ′

l (q) = f ′(q) and call it the deriva-
tive of f at q.

An application of Stokes’s theorem gives the following characterization of the
derivative of a regular function as the limit of a difference quotient:

PROPOSITION 2. Suppose that f is regular at q0 and continuously differentiable
in a neighbourhood of q0. Then given ε > 0, there exists δ > 0 such that if C is a non-
degenerate oriented 3-parallelepiped with q0 ∈ C(I3) and q ∈ C(I3) ⇒ |q− q0| < δ,
then

∣

∣

∣

∣

∣

(
∫

C

Dq

)−1 (
∫

∂C

dq ∧ dq f

)

− f ′(q0)

∣

∣

∣

∣

∣

< ε.

The corresponding characterization of the derivative in terms of the values of the
function at a finite number of points is

f ′(q0) = lim
h1,h2,h3→0

[Dq(h1, h2, h3)
−1{(h1h2 − h2h1)(f(q0 + h3) − f(q0))

+(h2h3 − h3h2)(f(q0 + h1) − f(q0))

+(h3h1 − h1h3)(f(q0 + h2) − f(q0))}].
(3.8)

This is valid if it is understood that h1, h2, h3 are multiples of three fixed linearly
independent quaternions, hi = tiHi, and the limit is taken as t1, t2, t3 → 0.

By writing (3.7) as
dq ∧ dq ∧ df = Dq f ′(q)

and evaluating these trilinear functions with arguments (i, j, k) and (1, i, j), we obtain
two equations which give an expression for the derivative as

f ′ = −2∂lf = −∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
(3.9)

and also
PROPOSITION 3. (the Cauchy-Riemann-Fueter equations). A real-differentiable

function f is regular at q if and only if ∂̄lf = 0, i.e.

∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
= 0. (3.10)

If we write q = v + jw, f(q) = g(v, w) + jh(v, w) as in Theorem 1, (3.10) becomes
the pair of complex equations

∂g

∂v̄
=

∂h

∂w̄
,

∂g

∂w
= −∂h

∂v
, (3.11)

which can be seen as a complexification of the Cauchy-Riemann equations for a func-
tion of a complex variable.

From Proposition 3 and (2.35) it follows that if f is regular and twice differentiable,
then ∆f = 0, i.e. f is harmonic. We will see in the next section that a regular function
is necessarily infinitely differentiable, so all regular functions are harmonic.
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4. Cauchy’s theorem and the integral formula. The integral theorems for regular
quaternionic functions have as wide a range of validity as those for regular complex
functions, which is considerably wider than that of the integral theorems for harmonic
functions. Cauchy’s theorem holds for any rectifiable contour of integration; the in-
tegral formula, which is similar to Poisson’s formula in that it gives the values of a
function in the interior of a region in terms of its values on the boundary, holds for
a general rectifiable boundary, and thus constitutes an explicit solution to the general
Dirichlet problem.

The algebraic basis of these theorems is the equation

d(g Dq f) = dg ∧ Dq f − g Dq ∧ df

= {(∂̄rg)f + g(∂̄lf)}v,
(4.1)

which holds for any differentiable functions f and g. Taking g = 1 and using Proposi-
tion 3, we have:

PROPOSITION 4. A differentiable function f is regular at q if and only if

Dq ∧ dfq = 0.

From this, together with Stokes’s theorem, it follows that if f is regular and contin-
uously differentiable in a domain D with differentiable boundary, then

∫

∂D

Dq f = 0.

As in complex analysis, however, the conditions on f can be weakened by using Gour-
sat’s dissection argument. Applying this to a parallelepiped, we obtain

LEMMA 1. If f is regular at every point of the 4-parallelepiped C,
∫

∂C

Dq f = 0. (4.2)

The dissection argument can also be used to prove the Cauchy-Fueter integral for-
mula for a parallelepiped:

LEMMA 2. If f is regular at every point of the positively oriented 4-parallelepiped
C, and q0 is a point in the interior of C,

f(q0) =
1

2π2

∫

∂C

(q − q0)
−1

|q − q0|2
Dq f(q). (4.3)

Proof. In (4.1) take g(q) = (q−q0)−1

|q−q0|2
= −∂r

(

1
|q−q0|2

)

.

Then g is differentiable except at q0, and ∂̄rg = 0; hence if f is regular d(g Dq f) =
0 except at q0. A dissection argument now shows that in the above integral C can be
replaced by any smaller 4-parallelepiped C ′ with q0 ∈ int C ′ ⊂ C, and since f is
continuous at q0 we can choose C ′ so small that f(q) can be replaced by f(q0). Since
the 3-form g Dq is closed and continuously differentiable in H − {q0}, we can replace
∫

∂C′
g Dq by the integral over a 3-sphere S with centre at q0, on which

Dq =
(q − q0)

|q − q0|
dS,

11



where dS is the usual Euclidean volume element on the 3-sphere. Hence

∫

∂C

(q − q0)
−1

|q − q0|2
Dq f(q) =

∫

S

dS

|q − q0|3
f(q0) = 2π2f(q0). 2

We will use the following special notation for the function occurring in the integral
formula:

G(q) =
q−1

|q|2 .

This function is real-analytic except at the origin; hence in (4.3) the integrand is a
continuous function of (q, q0) in ∂C× int C and, for each fixed q ∈ ∂C, a real-analytic
function of q0 in int C. It follows ((12), p. 7) that the integral is a real-analytic function
of q0 in int C. Thus we have

THEOREM 1. A function which is regular in an open set U is real-analytic in U .
This makes it valid to apply Stokes’s theorem and so obtain Cauchy’s theorem for

the boundary of any differentiable 4-chain. It can be further extended to rectifiable
contours, defined as follows:

Definition. Let C : I3 → H be a continuous map of the unit 3-cube into H, and let
P : 0 = s0 < s1 < ... < sp = 1, Q : 0 = t0 < t1 < ... < tq = 1 and

R : 0 = u0 < u1 < ... < ur = 1

be three partitions of the unit interval I . Define

σ(C; P, Q, R) =

p−1
∑

l=0

q−1
∑

m=0

r−1
∑

n=0

Dq(C(sl+1, tm, un) − C(sl, tm, un),

C(sl, tm+1, un) − C(sl, tm, un),

C(sl, tm, un+1) − C(sl, tm, un)).

C is a rectifiable 3-cell if there is a real number M such that σ(C; P, Q, R) < M for all
partitions P , Q, R. If this is the case the least upper bound of the numbers (C; P, Q, R)
is called the content of C and denoted by σ(C).

Let f and g be quaternion-valued functions defined on C(I3). We say that f Dq g
is integrable over C if the sum

p−1
∑

l=0

q−1
∑

m=0

r−1
∑

n=0

f(C(s̄l, t̄m, ūn))Dq(C(sl+1, tm, un) − C(sl, tm, un),

C(sl, tm+1, un) − C(sl, tm, un),

C(sl, tm, un+1) − C(sl, tm, un))g(C(s̄, t̄m, ūn)),

where sl ≤ s̄l ≤ sl+1, tm ≤ t̄m ≤ tm+1 and un ≤ ūn ≤ un+1, has a limit in the
sense of Riemann-Stieltjes integration as |P |, |Q|, |R| → 0, where

|P | = max
0≤l≤p−1

|sl+1 − sl|

12



measures the coarseness of the partition P . If this limit exists, we denote it by
∫

C
f Dq g.

We extend these definitions to define rectifiable 3-chains and integrals over rectifi-
able 3-chains in the usual way.

Just as for rectifiable curves, we can show that f Dq g is integrable over the 3-chain
C if f and g are continuous and C is rectifiable, and

∣

∣

∣

∣

∫

C

f Dq g

∣

∣

∣

∣

≤ (max
C

|f |)(max
C

|g|)σ(C).

Furthermore, we have the following weak form of Stokes’s theorem:
STOKES’S THEOREM FOR A RECTIFIABLE CONTOUR. Let C be a rectifi-

able 3-chain in H with ∂C = 0, and suppose f and g are continuous functions defined
in a neighbourhood U of the image of C, and that f Dq g = dω where ω is a 2-form
on U . Then

∫

C

f Dq g = 0.

The proof proceeds by approximating C by a chain of 3-parallelepipeds with vertices at
the points Ca(sl, tm, un) where Ca is a 3-cell in C and sl, tm, un are partition points
in I . Stokes’s theorem holds for this chain of 3-parallelepipeds and we can use the
same argument as for rectifiable curves (see, for example, (13), p. 103).

We can now give the most general forms of Cauchy’s theorem and the integral
formula.

THEOREM 2. (Cauchy’s theorem for a rectifiable contour).
Suppose f is regular in an open set U , and let C be a rectifiable 3-chain which is

homologous to 0 in the singular homology of U . Then
∫

C

Dq f = 0.

Proof. First we prove the theorem in the case when U is contractible. In this case,
since d(Dq f) = 0 and f is continuously differentiable (by Theorem 1), Poincaré’s
lemma applies and we have Dq f = dω for some 2-form ω on D. But ∂C = 0, so by
Stokes’s theorem

∫

C
Dq f = 0.

In the general case, suppose C = ∂C∗ where C∗ is a 4-chain in U . We can dissect
C∗ as

C∗ =
∑

n

C∗
n,

where each C∗
n is a 4-cell lying inside an open ball contained in U and C∗

n is rectifiable.
Hence by the first part of the theorem

∫

∂C∗

n

Dqf = 0, and therefore

∫

C

Dq f =
∑

n

∫

∂C∗

n

Dqf = 0. 2

For the general form of the integral formula, we need an analogue of the notion of
the winding number of a curve round a point in the plane. Let q be any quaternion,
and let C be a 3-cycle in H − {q}. Then C is homologous to n ∂C0, where C0 is a
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positively oriented 4-parallelepiped in H−{q}, and n is an integer (independent of the
choice of C0), which we will call the wrapping number of C about q.

THEOREM 3 (the integral formula for a rectifiable contour).
Suppose f is regular in an open set U . Let q0 be a point in U , and let C be a

rectifiable 3-chain which is homologous, in the singular homology of U − {q0}, to a
differentiable 3-chain whose image is ∂B for some ball B ⊂ U . Then

1

2π2

∫

C

(q − q0)
−1

|q − q0|2
Dq f(q) = nf(q0)

where n is the wrapping number of C about q0.
Many of the standard theorems of complex analysis depend only on Cauchy’s inte-

gral formula, and so they also hold for quaternionic regular functions. Obvious exam-
ples are the maximum-modulus theorem (see, for example, (14), p. 165 (first proof))
and Liouville’s theorem ((14), p. 85 (second proof)). Morera’s theorem also holds for
quaternionic functions, but in this case the usual proof cannot easily be adapted. It can
be proved (8) by using a dissection argument to show that if f is continuous in an open
set U and satisfies

∫

∂C

Dq f = 0

for every 4-parallelepiped C contained in U , then f satisfies the integral formula; and
then arguing as for the analyticity of a regular function.

5. Construction of regular functions. Regular functions can be constructed from
harmonic functions in two ways. First, if f is harmonic then (2.35) shows that ∂lf is
regular. Second, any real-valued harmonic function is, at least locally, the real part of
a regular function:

THEOREM 4. Let u be a real-valued function defined on a star-shaped open set
U ⊆ H. If u is harmonic and has continuous second derivatives, there is a regular
function f defined on U such that Re f = u.

Proof. Without loss of generality we may assume that U contains the origin and is
star-shaped with respect to it. In this case we will show that the function

f(q) = u(q) + 2 Pu

∫ 1

0

s2∂lu(sq)q ds (5.1)

is regular in U .
Since

Re

∫ 1

0

s2∂lu(sq)q ds =
1

2

∫ 1

0

s2

{

t
∂u

∂t
(sq) + xi

∂u

∂xi

(sq)

}

ds

=
1

2

∫ 1

0

s2 d

ds
[u(sq)] ds

= 1
2u(q) −

∫ 1

0

su(sq) ds,

we can write

f(q) = 2

∫ 1

0

s2∂lu(sq)q ds + 2

∫ 1

0

su(sq) ds. (5.2)
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Since u and ∂lu have continuous partial derivatives in U , we can differentiate under
the integral sign to obtain, for q ∈ U ,

∂̄lf(q) = 2

∫ 1

0

s2∂̄l[∂lu(sq)]q ds+

∫ 1

0

s2{∂lu(sq)+ei∂lu(sq)ei} ds+2

∫ 1

0

s2∂̄lu(sq) ds.

But ∂̄l[∂lu(sq)] = 1
4s∆u(sq) = 0 since u is harmonic in U , and

∂lu(sq) + ei∂lu(sq)ei = −2∂lu(sq)

= −2∂̄lu(sq) since u is real.

Hence ∂̄lf = 0 in U and so f is regular. 2

If the region U is star-shaped with respect not to the origin but to some other point
a, formulae (5.1) and (5.2) must be adapted by changing origin, thus:

f(q) = u(q) + 2 Pu

∫ 1

0

s2∂lu((1 − s)a + sq)(q − a) ds (5.3)

= 2

∫ 1

0

s2∂lu((1 − s)a + sq)(q − a) ds + 2

∫ 1

0

su((1 − s)a + sq) ds. (5.4)

An example which can be expected to be important is the case of the function

u(q) = |q|−2.

This is the elementary potential function in four dimensions, as log |z| is in the com-
plex plane, and so the regular function whose real part is |q|−2 is an analogue of the
logarithm of a complex variable.

We take U to be the whole of H except for the origin and the negative real axis.
Then U is star-shaped with respect to 1, and |q|−1 is harmonic in U . Put

u(q) =
1

|q|2 , ∂lu(q) = −q−1

|q|2 , a = 1;

then (5.3) gives

f(q) = −(q Pu q)−1 − 1

|Pu q|2 arg q if Pu q 6= 0

=
1

|q|2 if q is real and positive,















(5.5)

where

arg q = log(Un q) =
Pu q

|Pu q| tan−1

( |Pu q|
Re q

)

, (5.6)

which is i times the usual argument in the complex plane generated by q. (In practice
the formulae (5.3) and (5.4) are not very convenient to use, and it is easier to obtain
(5.5) by solving the equations

∇.F = − 2t

(t2 + r2)2
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and
∂F

∂t
+ ∇× F =

2r

(t2 + r2)2
,

where t = Re q, r = Pu q and r = |r|—these express the fact that F : H → P is the
pure quaternion part of a regular function whose real part is |q|−2—and assuming that
F has the form F (r)r.)

We will denote the function (5.5) by −2L(q). The derivative of L(q) can most
easily be calculated by writing it in the form

L(q) = − r2 + teixi

2r2(r2 + t2)
+

eixi

2r3
tan−1

(r

t

)

; (5.7)

the result is

∂lL(q) = G(q) =
q−1

|q|2 . (5.8)

Thus L(q) is a primitive for the function occurring in the Cauchy-Fueter integral for-
mula, just as the complex logarithm is a primitive for z−1, the function occurring in
Cauchy’s integral formula.

Theorem 4 shows that there are as many regular functions of a quaternion variable
as there are harmonic functions of four real variables. However, these functions do not
include the simple algebraic functions, such as powers of the variable, which occur as
analytic functions of a complex variable. Fueter (4) also found a method for construct-
ing a regular function of a quaternion variable from an analytic function of a complex
variable.

For each q ∈ H, let ηq : C → H be the embedding of the complex numbers in
the quaternions such that q is the image of a complex number ζ(q) lying in the upper
half-plane; i.e.

ηq(x + iy) = x +
Pu q

|Pu q|y, (5.9)

ζ(q) = Re q + i|Pu q|. (5.10)

Then we have
THEOREM 5. Suppose f : C → C is analytic in the open set U ⊆ C, and define

f̃ : H → H by
f̃(q) = ηq ◦ f ◦ ζ(q). (5.11)

Then ∆f̃ is regular in the open set ζ−1(U) ⊆ H, and its derivative is

∂l(∆f̃) = ∆f̃ ′, (5.12)

where f ′ is the derivative of the complex function f .
For a proof, see (7). Note that if we write f(x+ iy) = u(x, y)+ iv(x, y), t = Re q

and r = Pu q, then

f̃(q) = u(t, r) +
Pu q

r
v(t, r), (5.13)

∆f̃(q) =
2u2(t, r)

r
+

2 Pu q

r

{

v2(t, r)

r
− v(t, r)

r2

}

, (5.14)
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where the suffix 2 denotes differentiation with respect to the second argument.
Functions of the form f̃ have been taken as the basis of an alternative theory of

functions of a quaternion variable by Cullen (15). The following examples are inter-
esting: when

f(z) = z−1, ∆f̃(q) = −4G(q); (5.15)

when
f(z) = log z, ∆f̃(q) = −4L(q) (5.16)

Given a regular function f , other regular functions can be constructed from it by
composing it with conformal transformations. The special cases of inversion and rota-
tion are particularly useful:

PROPOSITION 5. (i) Given a function f : H → H, let If : H − {0} → H be the
function

If(q) =
q−1

|q|2 f(q−1). (5.17)

If f is regular at q−1, If is regular at g.
(ii) Given a function f : H → H and constant quaternions a, b, let M(a, b)f be the

function
[M(a, b)f ](q) = bf(a−1qb). (5.18)

If f is regular at a−1qb, M(a, b)f is regular at q.
Proof. (i) By Proposition 4 it is sufficient to show that

Dq ∧ d(If)q = 0.

Now If = G(f ◦ ı), where G(q) = q−1/|q|2 and ı : H − {0} → H is the inversion
q 7→ q−1. Hence

Dq ∧ d(If)q = Dq ∧ dGqf(q−1) + Dq ∧ G(q)d(f ◦ ı)q

= Dq G(q) ∧ ı∗qdfq−1

since G is regular at q 6= 0. But

ı∗qDq(h1, h2, h3) = Dq(−q−1h1q
−1,−q−1h2q

−1,−q−1h3q
−1)

= −q−1

|q|4 Dq(h1, h2, h3)q
−1

by (2.31). Thus
Dq G(q) = −|q|2qı∗qDq

and so
Dq ∧ d(If)q = −|q|2qı∗q(Dq ∧ dfq−1)

= 0

if f is regular at q−1.
(ii) Let µ : H → H be the map q 7→ aqb. Then by (2.31)

µ∗Dq = |a|2|b|2a Dq b
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and so
Dq ∧ d[M(a, b)f ]q = Dq ∧ bµ∗

qdfµ(q)

= |a|−2|b|−2a−1(µ∗
qDq)b−1 ∧ bµ∗

qdfµ(q)

= |a|−2|b|−2a−1µ∗
q(Dq ∧ dfµ(q))

= 0

if f is regular at µ(q). It follows from Proposition 4 that M(a, b)f is regular at
q. 2

The general conformal transformation of the one-point compactification of H is of
the form

ν(q) = (aq + b)(cq + d)−1 (5.19)

with a−1b 6= c−1d. Such a transformation ((16), p. 312) is the product of a sequence
of transformations of the types considered in Proposition 5, together with translations
q 7→ q + a (which clearly preserve regularity). The corresponding transformation of
regular functions is as follows:

THEOREM 6. Given a function f : H → H and a conformal transformation ν as
in (5.19), let M(ν)f be the function

[M(ν)f ](q) =
1

|b − ac−1d|2
(cq + d)−1

|cq + d|2 f(ν(q)).

If f is regular at ν(q), M(ν)f is regular at q.
6. Homogeneous regular functions. In this section we will study the relations be-

tween regular polynomials, harmonic polynomials and harmonic analysis on the group
S of unit quaternions, which is to quaternionic analysis what Fourier analysis is to
complex analysis.

The basic Fourier functions einθ and e−inθ, regarded as functions on the unit circle
in the complex plane, each have two extensions to harmonic functions on C − {0};
thus we have the four functions zn, z̄n, z−n and z̄−n. The requirement of analyticity
picks out half of these, namely zn and z−n. In the same way the basic harmonic
functions on S, namely the matrix elements of unitary irreducible representations of
S, each have two extensions to harmonic functions on H − {0}, one with a negative
degree of homogeneity and one with a positive degree. We will see that the space of
functions belonging to a particular unitary representation, corresponding to the space
of combinations of einθ and e−inθ for a particular value of n, can be decomposed into
two complementary subspaces; one (like einθ) gives a regular function on H − {0}
when multiplied by a positive power of |q|, the other (like e−inθ) has to be multiplied
by a negative power of |q|.

Let Un be the set of functions f : H−{0} → H which are regular and homogeneous
of degree n over R, i.e.

f(αq) = αnf(q) for α ∈ R.

Removing the origin from the domain of f makes it possible to consider both positive
and negative n (the alternative procedure of adding a point at infinity to H has disad-
vantages, since regular polynomials do not necessarily admit a continuous extension to
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H∪{∞} ∼= S4). Let Wn be the set of functions f : H−{0} → H which are harmonic
and homogeneous of degree n over R. Then Un and Wn are right vector spaces over
H (with pointwise addition and scalar multiplication) and since every regular function
is harmonic, we have Un ⊆ Wn.

Functions in Un and Wn can be studied by means of their restriction to the unit
sphere S = {q : |q| = 1}. Let

Ũn = {f |S : f ∈ Un}, W̃n = {f |S : f ∈ Wn};

then Un and Ũn are isomorphic (as quaternionic vector spaces) by virtue of the corre-
spondence

f ∈ Un ⇔ f̃ ∈ Ũn, where f(q) = rnf̃(u), (6.1)

using the notation r = |q| ∈ R, u = q/|q| ∈ S.
Similarly Wn and W̃n are isomorphic.
In order to express the Cauchy-Riemann-Fueter equations in a form adapted to the

polar decomposition q = ru, we introduce the following vector fields X0, ..., X3 on
H − {0}:

X0f =
d

dθ
[f(qeθ)]θ=0, (6.2)

Xif =
d

dθ
f [q exp(eiθ)]θ=0 =

d

dθ
f [q(cos θ + ei sin θ)]θ=0 (i = 1, 2, 3). (6.3)

These fields form a basis for the real vector space of left-invariant vector fields on
the multiplicative group of H, and they are related to the Cartesian vector fields ∂/∂t,
∂/∂xi by

X0 = t
∂

∂t
+ xi

∂

∂xi

, (6.4)

Xi = −xi

∂

∂t
+ t

∂

∂xi

− εijk xj

∂

∂xk

, (6.5)

∂

∂t
=

1

r2
(tX0 − xiXi), (6.6)

∂

∂xi

=
1

r2
(εijkxjXk + tXi + xiX0). (6.7)

Their Lie brackets are
[X0, Xi] = 0, (6.8)

[Xi, Xj ] = 2εijkXk. (6.9)

Using (6.6) and (6.7) the differential operators ∂̄l and ∆ can be calculated in terms
of X0 and Xi. The result is

∂̄l = 1
2 q̄−1(X0 + eiXi), (6.10)

∆ =
1

r2
{XiXi + X0(X0 + 2)} . (6.11)

The following facts about the space of harmonic functions Wn are well known (and
follow from (6.11); see, for example, (17), p. 71):
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PROPOSITION 6. (i) W̃n
∼= W̃−n−2. (ii) dim Wn = (n + 1)2. (iii) The elements

of Wn are polynomials in q.
We can now obtain the basic facts about the spaces Un of regular functions:
THEOREM 7. (i) W̃n = Ũn ⊕ Ũ−n−2. (ii) Un

∼= U−n−3. (iii) dim Un = 1
2 (n +

1)(n + 2).
Proof. (i) Equation (6.10) shows that the elements of Un, which satisfy X0f = nf

and ∂̄lf = 0, are eigenfunctions of Ω = eiXi with eigenvalue −n. Since the vector
fields Xi are tangential to the sphere S, Ω can be considered as an operator on W̃n,
and Ũn consists of the eigenfunctions of Ω with eigenvalue −n. Using (6.9), it can be
shown that

Ω2 − 2Ω + XiXi = 0.

Hence
f̃ ∈ W̃n ⇒ ∆(rnf) = 0

⇒ XiXif = −n(n + 2)f

⇒ (Ω − n − 2)(Ω + n)f = 0.

It follows that W̃n is the direct sum of the eigenspaces of Ω̃ with eigenvalues −n and
n + 2 (these are vector subspaces of W̃n since the eigenvalues are real), i.e.

W̃n = Ũn ⊕ Ũ−n−2.

(ii) It follows from Proposition 5(i) that the mapping I is an isomorphism between
Un and U−n−3.

(iii) Let dn = dim Un. By (i) and Proposition 6(ii),

dn + d−n−2 = (n + 1)2

and by (ii),
d−n−2 = dn−1.

Thus
dn + dn−1 = (n + 1)2.

The solution of this recurrence relation, with d0 = 1, is

dn = 1
2 (n + 1)(n + 2). 2

There is a relation between Proposition 5 (ii) and the fact that homogeneous regular
functions are eigenfunctions of Ω. Proposition 5 (ii) refers to a representation M of the
group H

××H
× defined on the space of real-differentiable functions f : H−{0} → H

by
[M(a, b)f ](q) = b f(a−1qb).

Restricting to the subgroup {(a, b) : |a| = |b| = 1}, which is isomorphic to

SU(2) × SU(2),

we obtain a representation of SU(2) × SU(2). Since the map q 7→ aqb is a rotation
when |a| = |b| = 1, the set W of harmonic functions is an invariant subspace under
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this representation. Now W = H ⊗C W c, where W c is the set of complex-valued
harmonic functions, and the representation of SU(2) × SU(2) can be written as

M(a, b)(q ⊗ f) = (bq) ⊗ R(a, b)f

where R denotes the quasi-regular representation corresponding to the action q 7→
aqb−1 of SU(2) × SU(2) on H − {0}:

[R(a, b)f ]q = f(a−1qb).

Thus M |W is the tensor product of the representations D0 × D1 and R|W c of

SU(2) × SU(2),

where Dn denotes the (n + 1)-dimensional complex representation of SU(2). The
isotypic components of R|W c are the homogeneous subspaces W c

n, on which R acts
irreducibly as Dn ×Dn; thus Wn is an invariant subspace under the representation M ,
and M |Wn is the tensor product (D0 × D1) ⊗ (Dn × Dn). Wn therefore has two
invariant subspaces, on which M acts as the irreducible representations Dn × Dn+1

and
Dn × Dn−1.

These subspaces are the eigenspaces of Ω. To see this, restrict attention to the second
factor in SU(2) × SU(2); we have the representation

M ′(b)(q ⊗ f) = M(1, b)(q ⊗ f) = [D1(b)q] ⊗ [R(1, b)f ]

where D1(b)q = bq. The infinitesimal generators of the representation R(1, b) are the
differential operators Xi; the infinitesimal generators of D1(b) are ei (by which we
mean left multiplication by ei). Hence the infinitesimal operators of the tensor product
M ′ are ei + Xi. The isotypic components of W are the eigenspaces of the Casimir
operator

(ei + Xi)(ei + Xi) = eiei + XiXi + 2Ω.

But eiei = −3, and XiXi = −n(n + 2) on Wn; hence

(ei + Xi)(ei + Xi) = 2Ω− n2 − 2n − 3.

and so the isotypic components of Wn for the representation M ′ are the eigenspaces
of Ω. Un, the space of homogeneous regular functions of degree n, has eigenvalue −n
for Ω, and so M ′|Un is the representation Dn+1 of SU(2).

Similar considerations lead to the following fact:
PROPOSITION 7. If f is regular, qf is harmonic.
The representation M of SU(2)×SU(2) can also be used to find a basis of regular

polynomials. It belongs to a class of induced representations which is studied in (18),
where a procedure is given for splitting the representation into irreducible components
and finding a basis for each component. Rather than give a rigorous heuristic derivation
by following this procedure, which is not very enlightening in this case, we will state
the result and then verify that it is a basis.
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Since the functions to be considered involve a number of factorials, we introduce
the notation

z[n] =
zn

n!
if n ≤ 0

= 0 if n < 0

for a complex variable z. This notation allows the convenient formulae

d

dz
z[n] = z[n−1], (6.12)

(z1 + z2)
[n] =

∑

r

z
[r]
1 z

[n−r]
2 (6.13)

where the sum is over all integers r.
The representation Dn of S ∼= SU(2) acts on the space of homogeneous polyno-

mials of degree n in two complex variables by

[Dn(u)f ](z1, z2) = f(z′1, z
′
2),

where
z′1 + jz′2 = u−1(z1 + jz2).

Writing u = v + jw where v, w ∈ C and |v|2 + |w|2 = 1, we have

z′1 = v̄z1 + w̄z2, z′2 = −wz1 + vz2.

Hence the matrix elements of Dn(u) relative to the basis fk(z1, z2) = z
[k]
1 z

[n−k]
2 are

Dn
kl(u) = (−)nk!(n − k)!P n

kl(u)

where
P n

kl(v + jw) =
∑

r

(−)rv[n−k−l+r]v̄[r]w[k−r]w̄[l−r] (6.14)

The functions P n
kl(q) are defined for all quaternions q = v + jw and for all integers k,

l, n, but they are identically zero unless 0 ≤ k, l ≤ n.
PROPOSITION 8. As a right vector space over H, Un has the basis

Qn
kl(q) = P n

kl(q) − jP n
k−1,l(q) (0 ≤ k ≤ l ≤ n).

Proof. Using (6.14), it is easy to verify that Qn
kl satisfies the Cauchy-Riemann-

Fueter equations in the form (cf. 3.11)

∂P n
kl

∂v̄
= −

∂P n
k−1,l

∂w̄
,

∂P n
kl

∂w
=

∂P n
k−1,l

∂v
.

Since the functions Dn
kl are independent over C as functions on S for 0 ≤ k, l ≤ n, the

functions P n
kl are independent over C as functions on H for 0 ≤ k, l ≤ n. It follows

that the functions Qn
kl (0 ≤ k ≤ n + 1, 0 ≤ l ≤ n) are independent over C and

therefore span a right vector space over H of dimension at least 1
2 (n+1)(n+2). Since

this space is a subspace of Un which has dimension 1
2 (n+1)(n+2), the Qn

kl span Un.
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Since zj = jz̄ for any z ∈ C, it can be seen from the definition (6.14) that

P n
kl j = j P n

n−k,n−l

and therefore
Qn

kl j = Qn
n−k+1,n−l.

Thus Un is spanned by the Qn
kl (0 ≤ k ≤ l ≤ n), which therefore form a basis for

Un. 2

Another basis for Un will be given in the next section.
We conclude this section by studying the quaternionic derivative ∂l. Since ∂l is a

linear map from Un into Un−1 and dim Un > dim Un−1, ∂l must have a large kernel
and so we cannot conclude from ∂lf = 0 that f is constant. However, although the
result is far from unique, it is possible to integrate regular polynomials:

THEOREM 8. Every regular polynomial has a primitive, i.e. ∂l maps Un onto
Un−1 if n > 0.

Proof. Suppose f ∈ Un is such that ∂lf = 0. Then

∂f

∂t
= ei

∂f

∂xi

= 0.

Thus f can be regarded as a function on the space P of pure imaginary quaternions.
Using vector notation for elements of P and writing f = f0 + f with f0 ∈ R, f ∈ P ,
the condition ei ∂f/∂xi = 0 becomes

∇f0 + ∇× f = 0, ∇.f = 0.

If n ≥ 0, we can define f(0) so that these hold throughout P , and so there exists a
function F : P → P such that

f = ∇× F, f0 = −∇.F,

i.e.

f = ei

∂F

∂xi

.

Then F is harmonic, i.e. ∇2
F = 0.

Let Tn be the right quaternionic vector space of functions F : P → H which
are homogeneous of degree n and satisfy ∇2

F = 0; then dim Tn = 2n + 1. Let
Kn be the subspace of Tn consisting of functions satisfying ei ∂F/∂xi = 0; then
Kn = ker∂l ⊂ Un. The above shows that ei ∂/∂xi : Tn+1 → Tn maps Tn+1 onto
Kn; its kernel is Kn+1 and so

dim Kn + dim Kn+1 = dim Tn+1 = 2n + 3.

The solution of this recurrence relation, with dim K0 = 1, is dim Kn = n + 1. But

dim Un − dim Un−1 = 1
2 (n + 1)(n + 2) − 1

2n(n + 1) = n + 1.

It follows that ∂l maps Un onto Un−1. 2
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THEOREM 9. If n < 0, the map ∂l : Un → Un−1 is one-to-one.
Proof. We introduce the following inner product between functions defined on the

unit sphere S:

〈f, g〉 =

∫

S

f(u)g(u)du

where du denotes Haar measure on the group S, normalized so that
∫

S

du = 1
2π2.

For functions defined on H, we can write this as

〈f, g〉 =

∫

S

f(q)q−1Dq g(q)

As a map: Un×Un → H , this is antilinear in the first variable and linear in the second,
i.e.

〈fa, gb〉 = ā〈f, g〉b for all a, b ∈ H

and is non-degenerate since 〈f, f〉 = 0 ⇔ f = 0.
Now let f ∈ Un, g ∈ U−n−2 and let I denote the map: Un → U−n−3 defined in

Proposition 5(i). Then

〈g, I∂lf〉 =

∫

S

g(q)q−1Dq q−1∂lf(q−1)

= −
∫

S

g(q)ı∗(Dq ∂lf),

where ı denotes the map q 7→ q−1 and we have used the fact that ı∗Dq = −q−1Dq q−1

for q ∈ S. Since f is regular, Dq ∂lf = 1
2d(dq ∧ dq f) and so

〈g, I∂lf〉 = −1

2

∫

S

g(q)d[ı∗(dq ∧ dq f)]

=
1

2

∫

S

dg ∧ ı∗(dq ∧ dq f) since ∂S = 0.

On S, the inversion ı coincides with quaternion conjugation; hence ı∗dq = dq̄ and
therefore

〈g, I∂lf〉 =
1

2

∫

S

dḡ ∧ dq̄ ∧ dq̄f(q−1)

=
1

2

∫

S

dq ∧ dq ∧ dgf(q−1)

=

∫

S

Dq ∧ ∂lg(q)f(q−1)

since g is regular. Since conjugation is an orthogonal transformation with determinant
−1, Dq(h̄1, h̄2, h̄3) = −Dq(h1, h2, h3); hence, because conjugation is the same as
inversion on S,

Dq = −ı∗Dq = q−1Dq q−1.
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Thus

〈g, I∂lf〉 =

∫

S

∂lg(q)q−1Dq q−1f(q−1)

= 〈∂lg, If〉.
But I is an isomorphism, the inner product is non-degenerate on U−n−2, and ∂l maps
U−n−2 onto U−n−3 if n ≤ −3; it follows that ∂l : Un → Un−1 is one-to-one. 2

In the missing cases n = −1 and n = −2, Theorems 8 and 9 are both true trivially,
since U−1 = U−2 = {0}.

7. Regular power series. The power series representing a regular function, and the
Laurent series representing a function with an isolated singularity, are most naturally
expressed in terms of certain special homogeneous functions.

Let ν be an unordered set of n integers {i1, ..., in} with 1 ≤ ir ≤ 3; ν can also
be specified by three integers n1, n2, n3 with n1 + n2 + n3 = n, where n1 is the
number of 1’s in ν, n2 the number of 2’s and n3 the number of 3’s, and we will write
ν = [n1n2n3]. There are 1

2 (n + 1)(n + 2) such sets ν; we will denote the set of all
of them by σn. They are to be used as labels; when n = 0, so that ν = ∅, we use the
suffix 0 instead of ∅. We write ∂ν for the nth order differential operator

∂ν =
∂n

∂xi1 ...∂xin

=
∂n

∂xn1∂yn2∂zn3

.

The functions in question are

Gν(q) = ∂νG(q) (7.1)

and

Pν(q) =
1

n!

∑

(tei1 − xi1 )...(tein
− xin

) (7.2)

where the sum is over all n!/(n1!n2!n3!) different orderings of n1 1’s, n2 2’s and n3

3’s. Then Pν is homogeneous of degree n and Gν is homogeneous of degree −n − 3.
As in the previous section, Un will denote the right quaternionic vector space of

homogeneous regular functions of degree n.
PROPOSITION 9. The polynomials Pν(ν ∈ σn) are regular and form a basis for

Un.
Proof. (17) Let f be a regular homogeneous polynomial of degree n. Since f is

regular
∂f

∂t
+

∑

i

ei

∂f

∂xi

= 0

and since it is homogeneous,

t
∂f

∂t
+

∑

i

xi

∂f

∂xi

= nf(q).

Hence

nf(q) =
∑

i

(xi − tei)
∂f

∂xi

.

25



But ∂f/∂xi is regular and homogeneous of degree n − 1, so we can repeat the argu-
ment; after n steps we obtain

f(q) =
1

n!

∑

i1...in

(xi1 − tei1)...(xin
− tein

)
∂nf

∂xi1 ...∂xin

=
∑

ν∈σn

(−1)nPν(q)∂νf(q).

Since f is a polynomial, ∂νf is a constant; thus any regular homogeneous polynomial
is a linear combination of the Pν . Let Vn be the right vector space spanned by the Pν .
By proposition 6 (iii), the elements of Un are polynomials, so Un ⊆ Vn; but

dim Vn ≤ 1
2 (n + 1)(n + 2) = dim Un

by Theorem 7(iii). Hence Vn = Un. 2

The mirror image of this argument proves that the Pν are also right-regular.
Just as for a complex variable, we have

(1 − q)−1 =

∞
∑

n=0

qn

for |q| < 1; the series converges absolutely and uniformly in any ball |q| ≤ r with
r < 1. This gives rise to an expansion of G(p − q) in powers of p−1q; identifying it
with the Taylor series of G about p, we obtain

PROPOSITION 10. The expansions

G(p − q) =

∞
∑

n=0

∑

ν∈σn

Pν(q)Gν(p)

=

∞
∑

n=0

∑

ν∈σn

Gν(p)Pν(q)

are valid for |q| < |p|; the series converge uniformly in any region {(p, q) : |q| ≤ r|p|}
of H

2 with r < 1.
Now the same arguments as in complex analysis give:
THEOREM 10. Suppose f is regular in a neighbourhood of 0. Then there is a ball

B with centre 0 in which f(g) is represented by a uniformly convergent series

f(q) =
∑

n=0

∑

ν∈σn

Pν(q)qν ,

where the coefficients aν are given by

aν =
1

2π2

∫

∂B

Gν(q) Dq f(q)

= (−1)n∂νf(0).
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COROLLARY.
1

2π2

∫

S

Gµ(q) Dq Pν(q) = δµν ,

where S is any sphere containing the origin.
THEOREM 11 (the Laurent series). Suppose f is regular in an open set U except

possibly at q0 ∈ U . Then there is a neighbourhood N of q0 such that if q ∈ N and
q 6= q0, f(q) can be represented by a series

f(q) =

∞
∑

n=0

∑

ν∈σn

{Pν(q − q0)aν + Gν(q − q0)bν}

which converges uniformly in any hollow ball

{q : r ≤ |q − q0| ≤ R}, with r > 0, which lies inside N .

The coefficients aν and bν are given by

aν =
1

2π2

∫

C

Gν(q − q0) Dq f(q),

bν =
1

2π2

∫

C

Pν(q − q0) Dq f(q),

where C is any closed 3-chain in U − {q0} which is homologous to ∂B for some ball
with q0 ∈ B ⊂ U (so that C has wrapping number 1 about q0).

I am grateful for the hospitality of the Department of Applied Mathematics and
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(5) FUETER, R. Über die analytische Darstellung der regulären Funktionen einer
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