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COROLLARY 4. Let a+ b =0 and —1<at<1. Then the solution x of (1)
and (2) approaches a limit as t = oo

8]
x(r) — [¢(0) + b _n;b(s) ds ] .

i
1+ bt
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THE QUATERNION CALCULUS

C. A. DEAVOURS, The Cooper Union of New York
{Current address: Newark State College, Union, N.J.)

1. Introduction. Most students, upon completing a first course in complex
analysis, have gliinpsed the immense power and elegance of the subject, particularly
in treating two dimensional physical problems. The guestion then arises as to whether
an analogous calculus exists for three dimensions. Lack of an appropriate hyper-
complex number system seems to prevent any attempt along this line from going
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very far, Nevertheless, there exists an extensively developed four dimensional cal-
culus, little . known in this country, which was developed by R. Fueter [1] in the
decade following 1935. A good bibliography to papers on the subject is found in [2].
Rose’s work on quaternion velocity potentials for axisymmetric ﬂmd flow appears
to be the only paper on the subject to appear in English.

Fueter defines both right and left regular functions of a quaternion variable and
develops the associated theory by producing analogues of both Cauchy Theorems,
Liouville’s Theorem, and Laurent series developments. In quaternion [4] Abelian
functions having four periods are constructed and their properties studied.

Some of the essential aspects of Fueter’s calculus will be discussed in this papcr
using a somewhat ditferent approach., The author has found that selected topics
from this subject provide excellent optional topics for courses in complex variables,
especially for the more enquiring students. Once acquainted with quaternions
students often guess and prove theorems analogous to those which they have
recently learned in the course. Science and engineering students gain greatly from
such exposure as the use of quaternions provides them with a *‘concrete™ example
of an algebra more complicated than that of ordinary complex numbers. (Students
never seem te view matrices in this manner.)

The compact quaternion form of Maxwell’s equations which has been dis-
covered repeatedly by undergraduates over the years is included along with several
other topics of classroom interest.

2. Quaterniens. Quaternions were invented in 1843 by the Irish mathematician
William Rowen Hamilton after a lengthy struggle 1o extend the theory of complex
numbers to three dimensions. An account of Hamilton’s ultimate rejection of the
commutative law of multiplication and the ensuing quaternion wars which raged
afterwards is 1o be found in [5] and [6].

The algebra of quaternions has the distinction of being one of the three associative
division algebras possible. Linear combinations are formed of the four units 1,
, Jj, k using coefficients taken from the real number field. The quaternion thus
formed, w + xi + yj + zk will be denoted q or w + r, where r is the usual radius
vector of three dimensions, The w component of q is called the scalar part of the
quaternion and r is termed its veetor part. Quaternion addition and scalar multiplica-
tion are defined in the usual manner as to constitute a linear algebra. The symbol 1
behaves as the ordinary number one in multiplication while the other units satisfy:
PP e=kl=—1, ij=k=— ji, jk=i=—kj, ki =j=—ik Products
of quaternions are formed using the above rules and the distributive law. Thus

(¢ +A)(b+B)=ab—A-B+aB+bA+ AxB,

where the dot and cross indicate the usual three dimensional scalar and vector
cross products respectively. For any quaternion g = w + r there exists a conjugate
quaternion, § = w — r, satisfying q§ = §q = w? + x> + y* + z* = |q|%. The non-
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negative quantity |q| is termed the norm of q. The conjugation operation satisfies
the equation AB = BA. Quaternion multiplication is not commutative bui all
other algebraic properties of the real and complex numbers hold.

The skew fieid of quaternions is isomorphic to a subset of 4 by 4 matrices under
the mapping:

w X y Z
—X w -z )
q—
-~y z W —X
—z —y X w

or to a set of 2 by 2 complex matrices related to the Pauli spin matrices [8]. The
topological properties of the quaternion group are discussed in [7]. We shall consider
functions of a quaternion variable q which will be wriiten F(q); such functions
can be decomposed into a scalar and vector part which we shall write as F(q) = ¢+ .
The vector part of F will be expressed in component form as W = i + @, j + k.
Generally, the four components of F will be required to possess continuous partial
derivatives up to a certain order, usually first or second, for cur proofs to hold but
we shall not belabor this point,

In the sequel, D is a simply connected domain of E* with subdomain (¢ having
as its boundary the closed hypersurface do. Volume elements of o are denoted dV
while the (quaternion) oriented, outwardly directed surface elements of d¢ are
denoted 4@, Introducing the guaternion gradient operator

0 ¢ d i d
— TS RS Rl ' il
= ?w+v a +i§x+j6‘v+ oz’

we have the foliowing useful rasult.

THeorem 2.1, Let F = ¢ -+ be a function of the quaternion variableq = w + r,
then

-

(1) JMQ)FZJ CIFdY.

Proof. Equation (1) is a quaternion form of the Gauss divergence theerem for
four dimensions, Let d@ = dQg + dQ,i + dQ,j + dQ:k. If M is the matrix

¢ Wy 2 s
~ ¢ —¥3 W2
—i, s ¢ ~¥,

_ T =i Wy ¢
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and [dq] = (d0,dQ,,d3,,d0;) is a row vector having the same components as
the quaternion d@, then, the matrix product [dg]M is a row vector with the same
components as the guaternion product 4@F. By the Gauss Theorem

™

j [dq]M = J div(M)dY,

where the matrix divergence of M is to be taken.
It is readily verified that div(M) is a row vector whose four components are the
same as those of the quaternion

OF (5‘3- + V)@ +w)

@)
59{1“{“ Vf’b'i‘(t_({‘*V‘lII‘f‘v X \i},
W

ow

il

which establishes the result.
Similarly, we may demonsirate the alternate form of this result:

j Fi@ = { FOdv,

-
da )

where the gradient operator is understood to act on the function F to its left.

3. Regular quaternion functioms. In secking to construct a differential and
integral calculus of quaternion functions the first step would seem to be definition
of a derivative. A (right) quaternion derivative of the function F might be formed by
requiring the limit

dFjdg = lim(F(q + Aq) — F(q))/Aq

to exist as Ag— 0 and be independent of path for all increments Aq. By considering
four linearly independent increments Aw, Axi, Ayj, Azk one can derive a set of
over-determined partial diflerential equations to be satisfied relating the components
of F under such conditions. This approach leads to nothing productive since, even
for the simple function q*, the ratio of AF to Aq is not independent of Aq, as was
first observed by Hamilton [9]. The best one can do is to define scalar directional
derivatives under the definition

d,F = lim(F(q + en) — EqQ))/e

with g real, £ — 0, and n a unit quaternion in the desired direction. The vector Taylor
series expansion theorem in any direction can be then obtained but no real calculus
results since only directionally dependent quantities are encountered. These ideas
were first put forward by Hamilton himself in his Elements of Quaternions, [9].

To avoid the above difficulties, a weaker condition than path independence of
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the differential ratio must be adopted. For a continuous function of the complex
variable z = x + iy, the assertion

"

JC Pl =0

for every closed contour, C, in a domain of the z-plane is equivalent to the regularity
of f in that domain (Morera’s theorem). An alternate approach which suggests
itself is the following.

A function F of the quaternion variable q is said to be left regular in D if

® | @ =0

for every closed hypersurface, do, in D.

A right regular function is defined in similar manner by requiring the vanishing
of the integral [;, F(q)d@ under the same circumstances, The following properties
of regular functjons are easily established.

LemMA 3.1. If F(q) is right (left) regular in D and q, is a consiant quaternion,
then F(q — ag) is also right (left) regular in D.

Lemma 3.2, If F is right regular in D and G is left regular in D then
{2y FAQG = 0 for any closed hypersurface, dg, in D.

TueorReM 3.1. The function F = ¢+ is left regular in D if and only if

@ vy
& vp = - _vuxy.

dw

Proof. This result foltows directly from (1) and (2) since (4) and (3) are equivalent
to the single quaternion equation OF = 6.

The equations satisfied by the components of a right regular function are identical
to (4) and (5) with the sign preceding the cross product in (5) changed to plus and the
ideniical to the quaternion equation F[] = 0. if a function is simultaneously left
and right regular or, briefly, regular, then V x { = 0 and v is the gradiant of'a scalar
potential function, ¢ = V@, In this case, (4) and (5) are replaced by

d b
= v ——) =
ow o, (qb i r’jw) e

where A denotes the three dimensional Laplacian operator in x, v and z. These last
two equations have some-application in the study of fluid flow [3].

COROLLARY 3.1.1. Each component of a left or right regular function satisfies
Laplace’s equation in the four pariables w, x, y and z.
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Proof. Taking the divergence of both sides of (5) we obtain

o o oo
B =N S m g W
From (4)
- ¢ (ép) %
A = - “a;:(;) = e
Thus,
¢
T g =0

as required for the scalar part of F. From (5) we derive

Y L
“ I = ey W) & mmily

i

~V x (Vo +V x W)+ V(V - §) = Ay,

30 that

oM
Ay + Ec 0.

As might be expected, given a scalar function ¢ sufficient differentiability, a vector
function W can be found so that ¢ + 4\ constitutes a regular function of q, [1].
Due to the well-known maximum principle for solutions of Laplace’s equation we
have the following analogue of Liouville’s theorem.

COROLLARY 3.1.2. The only quaternion function regular with bounded norm
in all E* is a constant,

The concept of regularity may be extended to include functions regular in q.

DeriniTion. A function F = ¢ + ¢ is said to be left regular in q for a domain

D provided
f d@F = 0

for every closed hypersurface, dg, in D.

Right regularity in q is defined in the obvious manner through the vanishing of
faﬂ Fi@ in D. Necessary and sufficient conditions for F to be left (right) regular
in q are L]F = 0(F[J = 0) in D where

J
aw

Regular functions of q also satisfy Corollaries 3.1.1 and 3.1.2. A function, F, is left
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(right) regular in g only if its conjugate, ?, is right (left) regular in q. Further, the
“gnly functions simultaneously regular in both q and q are constants.

4. Generation of regular functions. Under the foregoing definitions, one hopes
that & norm convergent quaternion power series of the form

&

Z a9 —90)"

n=>0
where the a, arc constant quaternions, would be a regular function of q. Thus, for
every regular function of the complex variable z one could generate an analogous
regular function of g by formally replacing z by 9 in the power series expansion.
It is the perversity of the quaternion calculus that even simple powers of ¢ are not
regular functions. For example, the scalar part of g isw?—r-r which does not
satisfy Laplace’s equation and hence cannot be regular in q. Nevertheless, there is
a close connection between convergent quaternion power series and regular functions.
We shall term guaternion functions defined by norm convergent pewer series to be
analytic functions and shall restrict ourselves to power series with real coefficients.

The formal device of replacing z by q in & series expansion can be carried out in

a more systematic manner. Let f(z) = u(x,y) + iv(x, y) be a regular function of the
complex variable x +1y in some domain. We generaic a guaternion function F

from f by replacing x with w, y with 7 = (x2 + y? + z9)f and i with ¢, = g
F(q) = u(w,7) + &{w, ).

Since z' is replaced by q" this method yields the same result as the power series
substitution. We inquire as to whether or ot the function F thus generated is regular
in g. Instead of attempting to verify (4) and (5), we shall check the necessary
conditions A(u + e,v) = 0. We find that

02(_*_8. o*u +e&u
Py = e ——
ow? i ) ow? rogw?’
A{u+eu)_2”u+az-u, L dv , e+alu
W= Y gaTANT e w2 ) arr

Since

8y Pu v Dv

aw?2  ar? ut ez
then

24 1 dv 1

6 & e == 2(”——{1; e,.
(6) o ) rr+ ror 1 :

The only functions generated in this manner whose components satisfy Laplace’s
equation are constants or linear functions of g. Using duldr = — dv[dw, we may
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rewrite (6) as

0 v d{v
Agfu+ev) =2 ——(-J+e—I-]].
o4 +e,1) awlr " or r/}
Since the special variables x, y, z only occur in the combination r, this result appears
to be a special case of the more general equation

D B i dny = 2( seillang V') (:—j)

Since

Afu + &) = DI TI(u + e,0) = —25(3),

we deduce that

(8) OF=-22,

as may be readily verified. The equation (8) holds only for functions E, constructed
in the above manner. If F js generated from a function regular in the complex variable
Z = x — iy, the corresponding result obtained is

= v
Equations (8) and (9) yield the relation
— T OF
B = e el
. U 2 ( dw g r)’
which may be applied if F is generated from a regular function of z.
The symmetry of the generating process shows that the generated function must
be regular (both left and right) if it is either left or right regular and, therefore,
must satisfy [JF = 0. Equation (8) shows that functions generated from regular

functions are not regular; however,

vy 1/d% )
M) =G+ ) =
We have proved the following:

Tueorem 4.1. If F is generated from a reqular function f of z then the function
JALF is a regular function of q.

CoROLLARY 4.1.1. The norm convergent series Ya,A,q" is regular in q.

COROLLARY 4.1.2. Each component of a Junction F generated as above satisfies
the biharmonic equation A;AF = 0.
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COROLLARY 4.1.3. Let v be harmonic in w and r. Then the quaternion func-
tion [I(v/r) is regular in q.

TuroreM 4.2, Let F be generated from the function f regular in z then

L)
(].1) A4F = ;e’(ﬁ@#w W?‘ )

Proof. Applying the operator [ to both sides of (8), we find
= - (4 2 = v
(12) CI0F = AF = — 2u(;} - -4&v +;er).

Since v may be written as v{w,r) = 1(e,F — e, F), we have

(13) : Fo =0, ~ 10,

s

The function e,F_is generated from the function if which is regular in Z while ,F is
generated from if which is regular in z, so by (9) and (10), equation (13} becomes .

:.:‘v__l,f’fg. _.EI’)e EE_}._M_ = —@ Ef_
- _2(-1" 2(“"aw r " aw

Equation {11) now follows from (12). Fueter’s two formulas for A.q" and A,q™"
[1, p. 316] are special cases of (11).

5. The Cauchy-Fueter integral formuia. Cauchy’s integral formula expresses the
value of a regular function at a point interior o a closed contour in terms of the
integral of its values on the contour. An analogous but more complicated theorem
holds for regular functions of q. We shall need the following fundamental theorem.

THEOREM 5.1. Let dc be a closed hypersurface in E* containing the point g,
then

0 n=~01--
(14) J Afg—qo)d@ =« 8z" n=—1
fole4
0 n= —2,-3,

Proof. For r a non-negative integer Alg — qo)" is regular in E* and the result
follows directly from the definition of regularity. If n is a negative integer the desired
results can all be obtained from the case n = — 1 by differentiation under the in-
tegral sign with respect to the scalar part of qo. In fact, if

(15) [ A4(q —_ qo)nida = 8]'1'.'2,

o0

then
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" k

" d "
j Ayq—qp) d@ = J Ay —(q —qy) ld@
der

4 AF
P awg

ak
awt

i (!c!)f Aq— g0 Md@ = ¢,
O

withqq = wg +rgand k = 1,2,---.
All that remains is to prove (15). In view of Lemma 3.1 we need only to establish
the case where g, = 0 and do is a hypersurface enclosing the point q, = 0. Since

A,q % is regular except atq = 0,
f Aq lda = MJ Aq~ld@.
ée lal=1
Equation (7) can be used to find A,q ™", Because v(w,r) = —r/p? where p? = w2 +r%,
then A,q”% = — (4/p>)q " . The scalar surface element of a sphere having radius

|q|in E* is |q|?dS, where dS is the surface element of the corresponding unit sphere
n E*, {10, p. 677]. The oriented surface element for a sphere of radius | q | is therefore

(16) d@ = |q|>qds.

The integral in guestion becomes

3 ~

— Agq @ = J q 'qdS = 8xz?,
lg] =1

Jla|=1

since the surface area of the unit sphere in E* is 2n%, [10,p. 677].

The previous theorem leads one to expect that the functions A,q" will play
roughly the same role in the guaternion calculus that the functions z” play in ordinary
complex analysis, Given a function F defined by a Laurent type series

Fla)= X a,(q-q)
we deduce formally
AFQHa—qo) ™ = Z a,Ag—9q0)" "

n=—w

from which we derive
: ¢ . A
a,_; = F(qy) = ) Ja AF(q)(q —qp) " 4@,

Of more interest is the following analogue of the Cauchy integral formula.

THEOREM 5.2. Let F be a regular function of q in D. If 80 is a hypersurface in
in D containing the point qq, then
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1 ; o
Fqo) =gz j F(q)d@A,(q —90) -
da

Proof. For & small enough, the hypersurface centered at g, defined by
lq— q,| = ¢ lies inside d¢. In the region between the surface of the e-sphere and
Jo both F and A g —qq)” ' are regular so that, using Lemma 3.2 we can show that

i " L : -
o j FQ@ALQ —9) ' = g3 J F(@)d@A,(a - 90"

{g4—qo| =2

The surface element for the last integral is found by replacing g with ¢ — o in (16);
thus,

4@ = |q — g/ *q — 90)4S.
The function F(g) is to have sufficient differentiability so that
F(q) = F(ao) + 0((a — G0 19— 9] ~0-
The limit of the last integral as e > 0 18 therefore found to be

4 : -
lim s j F(q)eX(@ — o)~ (q — Go) " 'dS
lg—gol =1

1 .
= limgz— [ (F(q,) + O(eNdS = F(Qo)
n Jlg—aai=1

as required.

1t is essential in Theorem 3.2 that the terms in the integral be separated by the
differential d& since F- Ayq —~ g,y ! is not generally regular even if F is. Many
properties of regular functions such as the existence of series expansions, mean
value theorems, etc., can be proved from (17) in much the same manner as is done in
complex analysis. We give only one such example, the familiar Poisson integral
formula for # = 4, [10, p. 265].

CorOLLARY 5.2.1. Let F=¢ + s be regular in qforlqi < pand letqy=Wot7o
be a point such that | go| = R, where p > R, then

Mt - RY [ Hq)dS
18 Y ol N o wAEIP
L) o) 2n? jlq;qnlﬂ (p* + R* — 2pR cos (&)

where cos(0) is defined by
(19) cos(f) = (wwo + 7 ro)/|allqol-
Proof. From (19)
lq||ge| cos(B) = wwo+ 1 Fo
= |a|* +[a|* —la — %o’
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s0 that (18) becomes

20 Moy — L0 =Ry FICIE
el ﬁ(QO) 2n? [a—-a0] =1 |q_q0|4

From T heorem 5.2,

1 y =
@y Fan = g3 | @
n la~qol=n
o L j F(9)p*qds(q — q,) !
20 [ isgapet |qmqu|2
Ifqg = p*q;* then | q3| > p*/R > p and
l .
(22) 0= é—zf F(q)d@y(q — q,) !
x f‘l"qo| =p
o b f (f_)z £9d597'(G, —9) 7'§,
2n? lg=gqoj =1 \ P Iq _quZ

Dividing out the constant (R/p)* from (22) and subtracting (21) from (22) we
find

1 Fg)p? N Bt
Figo) = —-;f —(-gl’%;;{q(q“qo)*‘ +(9—-90)7'q0]dS
) 2m lg~g0| =1 ,q ~ Yo |
_ PR f _Fla)ds
2 W a-au =1 ‘q - qUIé

which proves the equation (20) and hence the theorem when the scalar parts of the
last equation are equated. '

6. Applications, Aside from older mechanics texts which sometimes treat rotations
in the quaternjon form, they are seldom encountered except with their cousins
octernions and Clifford numbers in the factorization of relativistic energy equa-
tions, [11]. Instead of studying Laplace’s equation in 4 variables, one generally
wants to consider the wave operator,

[*]

d

i
A il ‘_2' 'é’;é .

c

Formal replacement of w (o ict changes one equation into the other. The equations
for right regular quaternion functions then become

L -
@3 s =V,
' i
(24) Vfﬁ = —a' r,“o;t—‘i‘ v X lll.
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The resemblance of (23) to a conservation equation suggests the further substitution
¢ = — il to obtain from (23) and (24)

(25) : %%}4—\7-4;:0,
(26) Vi=ﬁ233+ﬁ?xv

We expect A to be real and ¥ to have real components. Equations (25) and (26)
describe a variety of physical systems. If we identify 1 = ce and { = ¢*m where ¢
is the speed of light in vacuo, € and 7 are the relativistic energy and momentum
densities, respectively, of the system under consideration, then, (25) and (26) break
into the three equations

Je & s
"b?ﬂ'v (e“m) = 0

L5 (“)
¢ &t C

Vxn=0

It
=]

These three equations, the first of which is the conservation of mass-energy, constitute
ihe basis of relativistic mechanics in the absence of electromagnetic forces, [11, p. 272].

Defining the relativistic momentum quaternion P = —ie+cn and the operator
LR —i 0
(%= —— =4V
¢ 1

we have the following quaternion expression for these equations:
[*P = 0.
Thus, we have proved the following result.

TueoreM 6.1. In the absence of electromagnetic forces, the momentum quater-
nion, P, is a (formal) regular functien of the guaternion variable ict + r.

Maxwell's equations
V H=0 V- E=p
1 oH

“'T'+VXE:0
c ot

I ¢E

Lok L J=VxH
c5!+1

are likewise expressed in the simple quaternion form
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27) CT*(E + iH) = ﬁp+—-§]. -

If ¢ and A are the usual Hertzian scalar and vector potentials for E and H, {12, p.
212], the electromagnetic field is derivable from the quaternion potential function
i¢p + A through the equation

(28) O + A) = i(E + iH).
From (27) and (28) we obtain

(29) PTG+ A = (- 21 AlGo + A).

¢ O

In component form (29) yield the equations relating the electromagnetic potential
with the charge and current densities

1
[i¢ = p, (1PA = Ej’

where [ &

2 NUSY WO, .
U ¢ a2’
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