
Quaternion Space-times-time Invariance as

Gravity

⇤

D. B. Sweetser†‡

April 24, 2015

Abstract

The square of a quaternion luckily has the Lorentz invariant interval of
special relativity as its first term. The other three space-times-time terms
are commonly ignored. Ways to vary a quaternion with a continuous
function by leave the intraval in the square invariant are discussed. One
method uses exponentials, leading to the hyperbolic functions found useful
in special relativity. Using the same approach to keep the space-times-time
invariant leads to a dynamic interval term. By preserving the space-times-
time terms using an exponential function and the geometric source mass,
an interval term is found that is similar but experimentally distinct from
the Schwarzschild metric applied to space-time 4-vectors. Space-times-
time invariance is not a field theory, so gravitons are not necessary and
quantization is moot.
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General relativity, Einstein’s elegant theory of gravity, is a field theory like
the three other fundamental forces of Nature: electromagnetism, the weak force,
and the strong force. The cause of gravity is any form of energy or momentum.
The field equations dictate the motion of particles with energy, thus applying
to all particles, even light.

Special relativity is not a special case of general relativity, despite the name.
Special relativity is about an invariant quantity in Nature that all inertial ob-
servers agree upon: the interval, a difference of squares in measurements of space
and time. Special relativity applies to all measurements, even those involving
the fundamental forces. The product of a measurement in space and one in
time, referred to hereafter as space-times-time, will change in known ways for
different inertial observers.1

This essay explores the opposite situation: what if two observers find their
space-times-time was an invariant, but their intervals were different? It is sug-
gestive that a defining characteristic of general relativity is that intervals vary
at different places in a gravitational field.

The invariant interval of special relativity in flat spacetime is generated by
contracting a 4-vector using the Minkowski metric. With such a simple system,
other products are omitted, namely, any with the space-times-time form, dt dxi.
Such terms could appear if one used a metric with non-diagonal components
which are unnecessary for flat spacetime.

There is a type of math that naturally embraces space-times-time terms.
All are familiar with real numbers, a mathematical field that allows for addi-
tion, subtraction, multiplication, and division. The complex numbers are also a
mathematical field, but now one has two degrees of freedom, often represented
by a pair of numbers.2 Complex numbers are no longer a totally ordered set.
The next sort of numbers has four-part harmonies, with a real bass and three
imaginary tenors. Known as the quaternions, they do not commute, so live with
the label of a division algebra. Quaternions still retain addition, subtraction,
multiplication, and division. The rules are similar for the complex numbers,
with the imaginary i replaced by an imaginary 3-vector and the inclusion of the
anti-symmetric cross product. Quaternions play a minor technical role as the
best way to do rotations in three dimensions.[8] A unit quaternion SU(2) sits in
the center of the standard model gauge symmetries. Despite that central role,
quaternions have historically been vilified to a comic degree.

"Quaternions came from Hamilton after his really good work had
been done; and though beautifully ingenious, have been an unmixed
evil to those who have touched them in any way, including Maxwell."

Lord Kelvin[10, See vol. II, p. 1070.]

There are published claims that one cannot write the Maxwell equations or
1How space-times-time changes under a Lorentz transformation is somewhat complicated.
2Deeper insights can sometimes be found working on a complex manifold, C1, using a

complex number and its conjugate instead of R2.
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represent the Lorentz group using real-valued quaternions.[2, 4, 6, 9] Neither
happens to be true. See the appendix for details if interested.

The square of a space-time measurement represented with quaternions is:

(dt, dx1, dx2, dx3)
2
= (dt2 � dx2

1 � dx2
2 � dx2

3, 2dt dx1, 2dt dx2, 2dt dx3). (1)

The first term of the square is the Lorentz invariant interval. It is followed
by the three space-times-time terms. There are a few advantages to having
these three extra bits of information. Say two inertial observers Alice and Bob
saw a collection of events. The first term of the square of the quaternion would
be the same. An analysis of the space-times-time value would let us know how
Alice was moving relative to Bob. If they also calculate the product of two
different events in both orders, then we would know something about the angle
between the events and the observer. If ab = ba, then they are in a straight line.
If for the three space-times-time terms, ab = �ba , they are at a right angle.
Anything between those extremes is in between.

What happens in curved space-time? With the standard machinery of differ-
ential geometry, a simple subtraction is not allowed. Instead, one has to parallel
transport one event to another along a geodesic using a known connection. Then
the subtraction can be done properly.

Quaternions don’t have a metric. Without a metric, there is no connection.
Maybe quaternions are an “unmixed evil.” Let’s explore anyway.

Construct a quaternion out of space-time functions that can be varied, yet
the first term of the square is invariant as required by special relativity:

(f, g1, g2, g3)
2
= (f2 � g21 � g22 � g23 , 2fg1, 2fg2, 2fg3). (2)

If the function f was exactly the same as each normalized gi, then the first
term in the square, the interval, would always be zero.3 This is an important
case: it is light. Changes in time are exactly equal to the magnitude of changes
in space.

With zero covered, find a way so the first term in the square is equal to one
for all inertial observers. The square of f must cancel out the square of g, but
leave unity behind. Work with a third function h and its inverse:

f =

1

2

✓
h+

1

h

◆
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h

◆
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h2 � 1
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◆◆
.

(3)

So long as the function h has an inverse, this will always work.4 Exponential
3The normalization depends on the count of non-zero g factors, 1p

3
if none are zero.

4Adjusting the normalization factor as needed.
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functions play an important role in theoretical physics. If the exponent is zero,
unity is the result and nothing is changed. For tiny exponents, the result may
contain a simple harmonic oscillator which are ubiquitous in Nature. For the
case in hand, the function f is a hyperbolic cosine which is the stretch factor
gamma of special relativity. The function g is the hyperbolic sine, the gamma
beta factor that also appears in special relativity.

Repeat these two simple math exercises for space-times-time. Find a general
way to make the square of a measurement have either three zeroes or three ones
- times the factor of two that is from the sum of two identical terms. Generating
three zero space-times-time factors is easy: take the norm of any quaternion.
Some effort has gone into quantum mechanics that uses quaternions in place of
complex numbers.[1] That topic is beyond the scope of this short essay. The
general way to generate three factors of two is also not difficult:

f =

1

h
g1,2,3 = h

(f, g1, g2, g3)
2
=

✓
1

h2
� 3h2, 2, 2, 2

◆
. (4)

An exponential function could be plugged in as before. This moves from a
pure math exercise to one with physics content if the exponential is chosen to
be related to gravity by using the geometric length of a mass5:

(e�z dt, ez dRi/c)
2
= (e�2z dt2 � e2z dR2

i /c
2, 2 dt dRi/c)

=

⇣
e�

2GM
c2R dt2 � e

2GM
c2R dR2

i /c
2, 2 dt dRi/c

⌘

if z =

GM

c2R
, i = 1, 2, 3. (5)

Let’s pause to discuss this expression. No metric was used to get here.
No field equation was solved. Instead a new invariance of Nature has been
proposed as it applies to products of quaternions in a weak gravitational system
characterized by one length. Algebraically, the first term is the same as the
Rosen exponential metric applied to an event 4-vector.[7]

Experimental tests of weak gravity fields use the first three terms of the
Taylor series expansion in z for the change in time, and the first two for changes
in space. Those terms are identical for the space-times-time invariant expression
and the Schwarzschild metric in Cartesian coordinates. There is no way to
distinguish these two at what is called first-order Parameterized Post-Newtonian
(PPN) accuracy. At second order, the new invariance proposal predicts 6% more
bending of light around a gravitational source.[3] Since the effect is smaller than
a micro-arcsecond, that is beyond our reach today.

5The coordinate-independent formulation is that the product of time and the norm of space
is invariant in a gravitational field.
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Massless light is bent by gravity. That can be accounted for in general
relativity because the coupling is to energy density which light has. With the
space-times-time invariance, there is no coupling term nor any field equations.
The same thing happens in special relativity: there is no coupling, nor field
equations. The space-times-time invariance may be the correct variation on the
invariant interval of special relativity, thus being the simplest pure geometry
approach to gravity, but not too simple.

With no graviton to quantize, there is no issue of quantizing a gravitational
field. What about energy loss by a binary pulsar? The Rosen metric allows for a
dipole mode of gravity wave emission, so is ruled out by the data which requires
a lower rate of gravity wave emissions.[11, See section 12.3(b).] In the space-
times-time invariant proposal, the exponential function and its inverse applied
to gravity above was static. Make it dynamic by including a time factor in a
way consistent with how we see the metric change in time for a binary pulsar.

Is a graviton required to carry away the energy? The system in question is an
isolated binary pulsar that conserves both energy and momentum. It does not
have a dipole moment like a magnet, but does have a quadruple moment, like a
wobbling water balloon. The energy could be carried away by an electromagnetic
field that had a quadruple as its lowest moment. While unusual, it is possible.

Does gravity as a space-times-time invariance play nicely with the three other
fundamental forces of physics? Given the stellar record of special relativity, there
is reason to hope.

A Appendix: Maxwell equations and the Lorentz

group using real-valued quaternions

The homogeneous Maxwell equations are vector identities. They hold when
written using quaternions. The Lagrange density used to derive the Maxwell
source equations is the difference of the squared magnetic and electric fields[5]:

L =

1

2

�
B2 � E2

�
. (A.1)

The difference of two squares is the product of their sums and difference. The
simplest product of a quaternion differential operator and potential generates
the difference of the magnetic and electric fields:

rA =

✓
@

@t
, ~r
◆⇣

�, ~A
⌘
=

 
@�
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�r ·A,

@ ~A

@t
+

~r�+

~r⇥ ~A

!
=

⇣
g, ~B � ~E

⌘
.

(A.2)
This also has a gauge field g which can easily be eliminated by subtracting

the conjugate of this product. The sum of these two fields - times a factor of
minus one - is formed by reversing the order of the differential with the potential:
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8

(rA� (rA)

⇤
) (Ar� (Ar)

⇤
) =

1

2

⇣
B2 � E2, 2 ~E ⇥ ~B

⌘
. (A.3)

The first term drops into the Euler-Lagrange equations to generate the Gauss
and Ampere laws of electromagnetism. As a bonus, there is the Poynting vector,
the directional energy flux density of an electromagnetic field.

Representing the compact Lie group needed to do spatial rotations is itself
compact when using quaternions:

R = (0, x1, x2, x3)

U = (cos(✓), sin(✓), 0, 0)

R ! R0
= URU⇤

= (0, x1, x2 cos(2✓)� x3 sin(2✓), x3 cos(2✓) + x2 sin(2✓)) .(A.4)

If one tries to simply change from the cosine and sine function to the hyper-
bolic cosine and sine function, a member of the Lorentz group is not generated.
This should not be a surprise since that group is not compact, a non-trivial
change. Other terms are required to pull off the trick:

B = (t, x1, x2, x3)

H = (cosh(↵), sinh(↵), 0, 0)

B ! B0
= HBH⇤

+ ((HHB)

⇤ � (H⇤H⇤B)

⇤
)/2

= (cosh(2↵) t� sinh(2↵)x1, cosh(2↵)x1 � sinh(2↵) t, x2, x3)

= (�t� ��x1, �x1 � ��t, x2, x3). (A.5)

Quaternions provide another way to write these expressions. Nothing new is
learned, other than to be skeptical of claims about the limitations of quaternions.
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